Patents Examined by Gary Jackson
  • Patent number: 11253397
    Abstract: A system for producing control data for controlling a laser so as to produce at least one cutting surface in a cornea of an eye of a patient includes a non-transitory computer readable medium having stored thereon instructions for establishing a geometry of a lenticule cut, establishing a geometry of a cap cut running substantially parallel to a surface of the cornea, establishing a geometry of an external opening cut arranged outside an optical zone of the eye of the patient, and establishing a geometry of an access cut to connect the cap cut to the external opening cut.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: February 22, 2022
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Mark Bischoff, Gregor Stobrawa
  • Patent number: 11253702
    Abstract: A device and a method, by means of which energy can be supplied to a retinal implant (12) via infrared radiation, are provided. To this end, infrared light is coupled in from an infrared light source (14), for example into a spectacle lens (13), and coupled out toward an eye (10) by way of an output coupling device (17) in order to illuminate the retinal implant (12).
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: February 22, 2022
    Assignee: CARL ZEISS AG
    Inventors: Johannes Kindt, Hans-Juergen Dobschal
  • Patent number: 11253207
    Abstract: A medical device includes a temperature sensor configured to deliver a temperature signal and an optical sensor configured to deliver an optical signal. The medical device also includes a microcontroller configured to receive the temperature signal and the optical signal. The microcontroller is configured to calculate, in real-time, a body temperature, a pulse rate, a respiratory rate, and a blood oxygen concentration based on the received temperature signal and the received optical signal. The medical device also includes a display configured to display the body temperature, the pulse rate, the respiratory rate, and the blood oxygen concentration of a patient.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: February 22, 2022
    Assignee: Neopenda, PBC
    Inventors: Sona Shah, Teresa Cauvel, Rebecca Peyser
  • Patent number: 11247037
    Abstract: A controller is provided to determine a ventricular filling phase slope as an indicator of high pulmonary capillary wedge pressure and/or cardiac index. Flow rate values describing a blood flow rate through a ventricular assist device are received. A ventricular filling phase segment is identified from a portion of the received flow rate values. A slope of the received flow rate values during the identified ventricular filling phase segment is determined. The determined slope is compared to a predetermined threshold value. When the determined slope exceeds the predetermined threshold value based on the comparison, a warning is triggered regarding an elevated pulmonary capillary wedge pressure or a low cardiac index value.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: February 15, 2022
    Assignee: The University of Chicago
    Inventors: Nir Uriel, Jonathan Grinstein
  • Patent number: 11246662
    Abstract: Various embodiments provide a cardiac mapping and model merging method including: generating a premature ventricular contraction (PVC) activation map of a heart based on a three-dimensional (3D) heart model and PVC electrocardiogram (ECG) data recording during PVC of the heart; generating a 3D internal surface model of the heart by triangulating point-by-point contact data collected during an electrophysiology (EP) procedure; merging the 3D activation map and the 3D internal surface model to form a PVC activation surface model; and pacing the heart at a first pacing location disposed in an area of earliest activation identified in PVC activation surface model.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: February 15, 2022
    Assignee: CATHETER PRECISION, INC.
    Inventor: Steve Adler
  • Patent number: 11241284
    Abstract: The invention relates to a skin treatment device (10) for fractional treatment of the skin (100) of a human being. A radiation source (5) emits a multi-mode laser beam (20) with a superposition (23) of mutually different higher-order laser modes. The multi-mode laser beam is configured by said superposition of different laser modes to simultaneously cause a first plurality of high-intensity zones, where the thermal threshold (TC) for collagen denaturation for the treatment zone (50) of the skin is at least reached, and a second plurality of low-intensity zones where the thermal threshold (TF) for fibroblast stimulation for the treatment zone of the skin is at least reached. This is advantageous for obtaining a skin treatment device with a simple and therefore low-cost fractional laser skin treatment system for combined collagen denaturation and fibroblast stimulation. The skin treatment device is based on non-uniform laser radiation in the form of the multi-mode laser beam.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: February 8, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Babu Varghese, Marco Baragona, Jonathan Alambra Palero, Martin Jurna, Margaret Ruth Horton, Anna Ezerskaia
  • Patent number: 11241191
    Abstract: Various systems are disclosed herein for detecting, monitoring, evaluating, and characterizing pain. They systems include a number of connected components, such as a provider device, a body-mapping system, a patient device, a user device, a referred pain device and/or a rectal probe device. Accordingly, the systems allow providers to track location-specific pain intensity for any number of patients over time in order to generate reports and determine treatment recommendations for such patients.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: February 8, 2022
    Inventor: Andru Zeller
  • Patent number: 11234647
    Abstract: An apparatus for measuring bio-information such as blood pressure is provided. The bio-information measuring apparatus includes: a pulse wave sensor configured to measure a pulse wave signal from an object; a fingerprint sensor configured to obtain fingerprint information of the object; and a processor configured to estimate a contact area of the object based on the fingerprint information, and obtain bio-information based on the pulse wave signal and the contact area.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: February 1, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae Min Kang, Yong Joo Kwon, Sang Yun Park
  • Patent number: 11235162
    Abstract: A system, such as an IMD system, includes a tissue conductance communication (TCC) transmitter configured to generate a beacon signal by generating a carrier signal and modulating a first property of the carrier signal according to a first type of modulation. The TCC transmitter is configured to generate a data signal subsequent to the beacon signal by generating the carrier signal and modulating a second property of the carrier signal different than the first property according to a second type of modulation different than the first type of modulation.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: February 1, 2022
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, Joel B. Artmann, Michael T. Hemming, David J. Peichel, Jonathan P. Roberts, Michael B. Terry, Eric R. Williams
  • Patent number: 11235165
    Abstract: Described herein are implantable medical devices (IMDs), and methods for use therewith, that enable monitoring of impedance associated with a pathway (e.g., including a lead) used to selectively deliver stimulation pulses to patient tissue. A method involves measuring or storing a first voltage indicative of the energy stored on a reservoir capacitor (Cres) just prior to a stimulation pulse being delivered via the pathway, as well as measuring or storing a second voltage indicative of the energy stored on the Cres just after the stimulation pulse is delivered via the pathway. The method also includes monitoring the impedance associated with the pathway based on a difference between the first and second voltages, which may involve determining a count value indicative of how long it takes to discharge the first voltage to drop to the second voltage, wherein the count value is a surrogate of the impedance associated with the pathway.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: February 1, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Eric C. Labbe, Paul F. Illegems, Cliff C. Nixon
  • Patent number: 11229407
    Abstract: Systems and methods to determine a risk factor related to dehydration and thermal stress of a subject are disclosed. Exemplary implementations may: generate output signals, by one or more sensors worn on a body of a subject, conveying information related to one or more of location of the subject, motion of the subject, temperature of the subject, cardiovascular parameters of the subject; store information related to the subject; obtain the output signals; determine in an ongoing manner, from the output signals, values of a water loss metric that correlates with estimated percentage of bodyweight of the subject lost in water; obtain heat index information for a contextual environment surrounding the subject; determine in an ongoing manner, from the output signals, values of an exertion metric that correlates with exertion of the subject due to work; and determine in an ongoing manner values for an aggregated risk factor of the subject.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: January 25, 2022
    Assignee: GoX Studio, Inc.
    Inventors: Joseph Karl Hitt, Robert Bruce Floersheim
  • Patent number: 11229369
    Abstract: Approaches described herein can determine one or more breathing phase patterns over a period of time using audio data captured by at least one microphone. The audio data can include one or more snores. A breathing phase pattern included within the period of time can be determined based at least in part on sensor data captured by one or more sensors in the electronic device. A determination can be made that a first breathing phase pattern represented by the audio data and a second breathing phase pattern represented by the sensor data are correlated. A determination can be made that the first breathing phase pattern represented by the audio data and the second breathing phase pattern represented by the sensor data both correspond to a user wearing the electronic device.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 25, 2022
    Assignee: Fitbit Inc
    Inventors: Hao-Wei Su, Logan Niehaus, Conor Joseph Heneghan, Jonathan David Charlesworth, Subramaniam Venkatraman, Shelten Gee Jao Yuen
  • Patent number: 11224757
    Abstract: Disclosed is an exchangeable laser unit and an array thereof. The exchangeable laser unit includes cartridge receivers and housings having a uniform shape and uniform optical interfaces. The cartridge receiver adopts the optical interface including a tapered cavity and cylindrical cavity, so that a precise mechanical connection can be achieved between the output of laser of the cartridge receiver and the output of the optical fiber of the housing without professional tools, facilitating standardization of the output components of the laser elements of the cartridge receiver. In addition, the upper-lower guide rails and the upper-lower channels having certain of inclination degree can realize the precise positioning of the cartridge receiver and the housing. When replacing one laser element by a laser element that emits laser with a different wavelength, it is only necessary to replace the cartridge receiver inside the housing.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: January 18, 2022
    Inventor: Hua Shang
  • Patent number: 11219781
    Abstract: An illumination system (1) for photodynamic therapy is provided, the illumination system comprising an illumination source (2), which is configured to emit an electromagnetic radiation (3) to illuminate a target surface (4) during operation, and an electronic control unit (5), wherein the illumination source is configured such that the intensity of the electromagnetic radiation emitted by the illumination source can be varied, wherein the electronic control unit is operatively connected to the illumination source and configured to control operation of the illumination source according to an illumination protocol during an illumination session performed with the illumination system, and wherein the illumination protocol comprises instructions to operate the illumination source during the illumination session in a plurality of different modes, the modes comprising: a) a first mode, wherein, in the first mode, the electronic control unit controls operation of the illumination source such that the intensity of th
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: January 11, 2022
    Assignee: BIOFRONTERA PHARMA GMBH
    Inventors: Hermann Lübbert, Ben Novak, Markus Osterloh
  • Patent number: 11219774
    Abstract: A computer implemented method and device for providing dual chamber sensing with a single chamber leadless implantable medical device (LIMD) are provided. The method is under control of one or more processors in the LIMD configured with specific executable instructions. The method obtains a far field (FF) cardiac activity (CA) signals for activity in a remote chamber of a heart and compares the far field CA signals to a P-wave template to identify an event of interest associated with the remote chamber. The method sets an atrial-ventricular (AV) delay based on the P-wave identified and delivers pacing pulses at a pacing site of interest to a local chamber based on the AV delay.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 11, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Nima Badie, Chunlan Jiang, David Ligon
  • Patent number: 11219765
    Abstract: Systems and techniques are disclosed to establish programming of an implantable electrical neurostimulation device for treating pain of a human subject, through the use and adjustment of analgesic stimulation parameters based on trust dynamics and trust measurements. In an example, the system to establish programming of the neurostimulation device performs operations that: determine a trust measurement value that is derived from results of at least one commitment made with a human subject, via observable interactions; determine a modification of at least one neurostimulation programming parameter, based on the trust measurement value; and to cause the implantable neurostimulation device to implement the modification of the at least one neurostimulation programming parameter. Further examples are provided to produce and track the trust measurement value, as well as identify a pain susceptibility value and determine a receptiveness to analgesic effects based on these and other trust dynamics.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: January 11, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Kozloski, Anup Kalia, Jeffrey Rogers, Sara E. Berger
  • Patent number: 11213676
    Abstract: An implantable medical device delivery system includes a delivery catheter including an elongated body with a first portion defining a first lumen and a second portion defining a second lumen. An angle is defined between a first axis and a second axis defined by the first and second portions, respectively. The second axis points toward the left ventricular (LV) apex of the patient's heart when the first axis points into the CS. The first portion or an elongated element may extend into the CS to anchor the delivery catheter to the orientation of the CS.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: January 4, 2022
    Assignee: Medtronic, Inc.
    Inventors: Andrea J. Asleson, Zhongping Yang, Ruth N. Klepfer
  • Patent number: 11213238
    Abstract: The various embodiments of the present invention disclose a stand-alone, scalable cardiac health monitoring device for 1-6-12 lead ECG data acquisition and a method of working thereof. The method of monitoring cardiac health condition of a patient comprises of receiving, by a cardiac monitoring device, an electrocardiograph (ECG) input data signals from at least two electrodes attached to the patient, performing, a quality check on acquiring the ECG input data signals, processing the acquired ECG input data signals, encrypting the processed ECG input data signals and transmitting the encrypted ECG signals to one or more external user devices over a wireless communication interface. The acquiring the ECG input data signals comprises of integrating a closed loop Right Leg Drive (RLD) as a shield drive and a cable/electrode shield to reduce noise coupling to the ECG input data signals.
    Type: Grant
    Filed: December 31, 2017
    Date of Patent: January 4, 2022
    Assignee: IMEDRIX SYSTEMS PRIVATE LIMITED
    Inventors: Rajaram Shastri, Nagesh Rangappan, Venkatakrishna Araveti, Niranjan Rayaprolu, Srikanth Jadcherla, Kishore Ramasamy, Lokesh Kumar Kata
  • Patent number: 11207016
    Abstract: A medical probe includes an insertion tube for insertion into a patient body, at least an arm, which is attached to a distal end of the insertion tube, at least a reference electrode coupled to the arm, and multiple electrodes, which are coupled to the arm, surround the reference electrode and are configured to sense electrical signals of body tissues that, when measured relatively to the reference electrode, are indicative of anatomical signals in the patient body.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: December 28, 2021
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Alexander David Squires, Christopher Thomas Beeckler
  • Patent number: 11207517
    Abstract: A percutaneous electrical phrenic nerve stimulation (PEPNS) system that measures the patient Work of Breathing (WOB) of each type of ventilator breath and determines when to deliver electrical stimulus based upon the measured WOB. The PEPNS system alters its behavior based upon the type and origin of the ventilator breath delivered and provides warnings for certain identified interactions between the ventilator and the patient.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: December 28, 2021
    Assignee: STIMDIA MEDICAL, INC.
    Inventor: John O'Mahony