Patents Examined by George Manuel
  • Patent number: 10143849
    Abstract: Implantable medical devices include connector enclosure assemblies that utilize conductors that are electrically coupled to feedthrough pins and that extend into a can where electrical circuitry is housed. The conductors may be coupled to the feedthrough pins and to capacitor plates within a filter capacitor by an electrically conductive bonding material and as a single bonding event during manufacturing. The base plate of the connector enclosure assembly may also include a ground pin. Ground capacitor plates may be present at a ground aperture of the filter capacitor where the ground pin passes through so that the ground pin, a ground conductor, and the ground capacitor plate may be coupled. A protective cover may be provided for the connector enclosure assembly to enclose the conductors intended to extend into the can prior to the assembly being joined to the can. Conductors may be attached to a common tab that is subsequently removed.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: December 4, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Steven T. Deininger, Michael J. Baade, Rajesh V. Iyer
  • Patent number: 10143827
    Abstract: Systems and methods are provided for optically reading a setting of an implantable valve. The valve includes optical emitters that are wirelessly powered by a valve reading tool that images the emitted light to determine the valve setting.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: December 4, 2018
    Assignee: INTEGRA LIFESCIENCES SWITZERLAND SÀRL
    Inventor: Steven Bittenson
  • Patent number: 10143833
    Abstract: An apparatus is used in a therapeutic process to provide relief of pain and swelling by dynamic electric stimulation at very low power levels at frequencies between about 2 to 100 Hz. in which the stimulation frequency is constantly offset from the detected dominant frequency by between about 2 to 20 Hz. The pain relief benefits can last weeks, even though the treatment duration is generally well under a minute.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: December 4, 2018
    Assignee: OCHSLABS LLC
    Inventors: Len Ochs, Catherine Wills
  • Patent number: 10130513
    Abstract: The disclosure features systems for providing information to a user about the user's environment, the system featuring a detection apparatus configured to obtain image information about the environment, where the image information corresponds to information at multiple distances relative to a position of the user within the environment, and an electronic processor configured to obtain focal plane distance information defining a set of one or more distance values relative to the position of the user within the environment, construct one or more confocal images of the environment, from the image information and the set of one or more distance values, wherein each of the one or more confocal images corresponds to a different distance value and comprises a set of pixels, and transform the one or more confocal images to form one or more representative images comprising fewer pixels and a lower dynamic range.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: November 20, 2018
    Assignee: Schepens Eye Research Institute
    Inventors: Eliezer Peli, Jae-Hyun Jung
  • Patent number: 10130307
    Abstract: Disclosed are an electrocardiogram (ECG) authentication method and apparatus, and a training method and apparatus for training a neural network model used for ECG authentication, the ECG authentication apparatus being configured to acquire an ECG signal of a subject, extract a semantic feature of the ECG signal, and authenticate the subject based on the extracted semantic feature.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: November 20, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yang Liu, Xuetao Feng, Chao Zhang, Chisung Bae, Sang-joon Kim
  • Patent number: 10130409
    Abstract: A method for cryogenically treating tissue. A connection is detected between a probe having a disposable secure processor (DSP) to a handpiece having a master control unit (MCU) and a handpiece secure processor (HSP), the probe having at least one cryogenic treatment applicator. The probe is fluidly coupled to a closed coolant supply system within the handpiece via the connection. An authentication process is initiated between the DSP and the HSP using the MCU. As a result of the authentication process, one of at least two predetermined results is determined, the at least two predetermined results being that the probe is authorized and non-authorized.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: November 20, 2018
    Assignee: Myoscience, Inc.
    Inventors: Corydon A. Hinton, Kyler Mikhail Connelly, Bijy Zachariah, Jesse Rosen
  • Patent number: 10123737
    Abstract: Systems and methods for treating a subject with a psychiatric disorder are provided in which a therapy session is conducted. In the therapy session, each respective expression image in a plurality of expression images is sequentially displayed. Each expression image is independently associated with an expression. The successive display of images is construed as a tiled series of expression image subsets, each consisting of N expression images. Upon completion of the display of each respective subset, the user is challenged as to whether the first and the last images in the respective subset exhibit the same emotion. A score is determined for the respective subset based on whether the subject learned to respond correctly. The number of images in each subset is adjusted to a new number based on these scores. A treatment regimen is prescribed to the subject for the psychiatric disorder based at least in part on the scores.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: November 13, 2018
    Assignee: ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI
    Inventors: Brian M. Iacoviello, Dennis S. Charney
  • Patent number: 10118040
    Abstract: A neuromodulation system comprises a plurality of electrical terminals configured for being respectively coupled to a plurality of electrodes, a user interface configured for receiving input from a user that selects one of a plurality of different shapes of a modulating signal and/or selects one of a plurality of different electrical pulse parameters of an electrical pulse train, neuromodulation output circuitry configured for outputting an electrical pulse train to the plurality of electrical terminals, and pulse train modulation circuitry configured for modulating the electrical pulse train in accordance with the selected shape of the modulating signal and/or selected electrical pulse parameter of the electrical pulse train.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: November 6, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Changfang Zhu
  • Patent number: 10118046
    Abstract: A system and method to deliver a therapeutic quantity of energy to a patient. The system includes a capacitor having a rated energy storage capacity substantially equal to the therapeutic quantity of energy, a boost converter coupled with the capacitor and constructed to release energy from the capacitor at a substantially constant current for a time interval, and an H-bridge circuit coupled with the boost converter and constructed to apply the substantially constant current in a biphasic voltage waveform to the patient. The method includes storing a quantity of energy substantially equal to the therapeutic quantity of energy in a capacitor, releasing the quantity of energy at a relatively constant current during a time interval using a boost converter coupled with the capacitor, and delivering a portion of the quantity energy in a direction to the patient using an H-bridge circuit coupled with the boost converter.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 6, 2018
    Assignee: ZOLL Medical Corporation
    Inventor: James G Radzelovage
  • Patent number: 10105537
    Abstract: A lead receptacle having a lumen configured to traverse from an outer side of an outermost intercostal muscle to an inner side of an innermost intercostal muscle of an intercostal space of a patient and to support a lead traversing through the lumen. The lumen being configured to support one or more cardiac leads traversing through the intercostal space.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: October 23, 2018
    Assignee: ATACOR MEDICAL, INC.
    Inventors: Sean McGeehan, Alan Marcovecchio, Rick Sanghera
  • Patent number: 10105539
    Abstract: Disclosed herein are methods, systems, and devices for configuring a stimulation unit of a hearing device by determining whether the stimulation unit can process received stimulation data. In an example method, the stimulation unit receives one or more data signals, which comprise at least one stimulation signal that includes stimulation data, and processes one of the data signals to determine whether it can process the stimulation data in order to generate one or more stimuli. If the stimulation unit can process the stimulation data, the method includes operating the stimulation unit in a normal mode, in which case the stimulation unit processes the stimulation data to generate the one or more stimuli. On the other hand, if the stimulation unit cannot process the stimulation data, the method includes operating the stimulation in a safe mode, in which case the stimulation unit does not process the stimulation data.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: October 23, 2018
    Assignee: Cochlear Limited
    Inventors: Luk Macken, Frédéric Goddeeris, Koen Van Herck
  • Patent number: 10105531
    Abstract: There is disclosed an electro-stimulation device having co-operating male/female locking engagement between an internal electrode connector and an externally facing contact electrode. This arrangement aids easy assembly of the electrostimulation device especially when using a unitary device body to form a self-contained device. The device may be arranged to deliver constant target current to a muscle for electro-stimulation of that muscle. The device may be a completely self-contained device with no external means for the adjustment and control of the electro-stimulation delivered to the muscle during treatment.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: October 23, 2018
    Assignee: FEMEDA LTD.
    Inventors: Nicholas John White, David Murray, Kenneth Timmerman
  • Patent number: 10092201
    Abstract: An ECG system measures and annotates the I-point of in an ECG waveform from harmonic waveforms. Electrical impulses are received from a beating heart. The electrical impulses are converted to an ECG waveform. The ECG waveform is converted to a frequency domain waveform, which, in turn, is separated into two or more different frequency domain waveforms, which, in turn, are converted into a plurality of time domain cardiac electrophysiological subwaveforms and discontinuity points between these subwaveforms. The plurality of subwaveforms and discontinuity points are compared to a database of subwaveforms and discontinuity points for normal and abnormal patients. A discontinuity point is identified as the I-point of the ECG waveform from the comparison. The ECG waveform is displayed along with a marker at a location of the discontinuity point.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: October 9, 2018
    Inventors: Guangren Chen, Rong Yang, Zhongnong Jiang
  • Patent number: 10092761
    Abstract: Systems and methods for evaluating multiple candidate electrostimulation vectors for use in therapeutic cardiac stimulation are disclosed. The system can include a programmable electrostimulator circuit for delivering electrostimulation to one or more sites of a heart according to multiple candidate electrostimulation vectors. One or more physiologic sensors can detect resulting physiologic responses to the electrostimulation. A processor circuit can generate categories of indicators including therapy efficacy indicators, battery longevity indicators, or complication indicators using the sensed physiologic responses. The candidate electrostimulation vectors can be ranked according to the categories of indicators in specified orders.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: October 9, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Yinghong Yu, Pramodsingh Hirasingh Thakur, David L. Perschbacher, Jason Humphrey, Yi Zhang
  • Patent number: 10092760
    Abstract: Systems, methods, and devices for detecting or confirming fibrillation are discussed. In one example, a method for detecting a cardiac arrhythmia of a patients' heart comprises receiving, by a leadless cardiac pacemaker fixed in the patients' heart, an indication from a remote device that a cardiac arrhythmia is detected, monitoring by the leadless cardiac pacemaker a signal generated by a sensor that is located within the patients' heart, and based at least in part on the monitored signal, confirming whether a cardiac arrhythmia is occurring or not. In some embodiments, the method may further comprise, if a cardiac arrhythmia is confirmed, delivering a therapy to treat the cardiac arrhythmia.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: October 9, 2018
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Paul Huelskamp, Benjamin J. Haasl
  • Patent number: 10092758
    Abstract: A method is provided to deliver C tactile fiber stimulation to nervous tissue of a patient. The method comprises delivering a first tactile stimulation waveform to a first electrode combination within an array of electrodes located proximate to nervous tissue of interest. The method further provides sequentially delivering successive tactile stimulation waveforms to successive electrode combinations within the array of electrodes. The first and successive tactile stimulation waveforms include at least one series of pulses having a pulse amplitude and pulse frequency. Delaying delivery of the successive tactile stimulation waveforms by a firing delay, the pulse amplitude, pulse frequency and firing delay represent therapy parameters. The method manages at least one of the therapy parameters of the first and successive tactile stimulation waveforms to excite C tactile fibers of the nervous tissue of interest.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: October 9, 2018
    Inventor: Dirk De Ridder
  • Patent number: 10085788
    Abstract: A surgical instrument kit comprising: (a) a robotic arm comprising a first jaw including a first bipolar electrode and a second jaw including a second bipolar electrode, wherein at least one of first jaw and second jaw is repositionable with respect to the other jaw; (b) a first surgical tool head including a first electrical load in electrical communication with a first pair of electrical terminals, the first surgical tool head adapted to be removably coupled to the robotic arm; and, (c) a second surgical tool head including a second electrical load in electrical communication with a second pair of electrical terminals, the second surgical tool head adapted to be removably coupled to the robotic arm, where the first pair of electrical terminals of the first surgical tool head are adapted to engage the first bipolar electrode and the second bipolar electrode to establish electrical communication between the first bipolar electrode and a first of the first pair of electrical terminals and between the second bi
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: October 2, 2018
    Assignee: AtriCure, Inc.
    Inventors: Salvatore Privitera, Matthew Monti, William J. Abner, Adam Harp, Jeffrey W. Stone
  • Patent number: 10085663
    Abstract: An ECG system identifies and annotates cardiac electrophysiological signals in an ECG waveform from harmonic waveforms. Electrical impulses are received from a beating heart. The electrical impulses are converted to an ECG waveform. The ECG waveform is converted to a frequency domain waveform, which, in turn, is separated into two or more different frequency domain waveforms, which, in turn, are converted into a plurality of time domain cardiac electrophysiological subwaveforms and discontinuity points between these subwaveforms. The plurality of subwaveforms and discontinuity points are compared to a database of subwaveforms and discontinuity points for normal and abnormal patients. At least one subwaveform or one or more discontinuity points are identified as a normal or abnormal electrophysiological signal of the ECG waveform from the comparison. The ECG waveform is displayed along with one or more markers at a location of the at least one subwaveform or one or more discontinuity points.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: October 2, 2018
    Inventors: Guangren Chen, Rong Yang, Zhongnong Jiang
  • Patent number: 10080829
    Abstract: A flow rate of blood through an implantable blood pump is determined based on a parameter related to the flow, such as a parameter related to thrust on the rotor of the pump. An amount of current supplied to the pump is used to determine each of a first flow rate value and second flow rate values. Each of the first and second flow rate values, in combination with the parameter related to thrust on the rotor of the pump, are used to calculate a flow rate of blood through the pump.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: September 25, 2018
    Assignee: HeartWare, Inc.
    Inventors: Fernando Casas, Justin Wolman, Carlos Reyes, Antonio Luiz Silva Ferreira
  • Patent number: 10080899
    Abstract: One aspect of the present disclosure relates to a closed-loop therapy system for treating autonomic instability or a medical condition associated therewith in a subject. The therapy delivery system can include a sensing component, a delivery component, and a controller. The sensing component can be configured to detect at least one physiological parameter associated with autonomic instability or a medical condition associated therewith. The delivery component can be configured for implantation on or about an autonomic nervous tissue target or a spinal nervous tissue target. The controller can be configured to automatically coordinate operation of the sensing and delivery components. The controller can also be configured to deliver an electrical signal to the delivery component to modulate activity at the autonomic nervous tissue target or a spinal nervous tissue target and effectively treat autonomic instability or a medical condition associated therewith.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: September 25, 2018
    Assignee: Ohio State Innovation Foundation
    Inventors: Ali R. Rezai, Punit Agrawat