Patents Examined by George Manuel
  • Patent number: 10674959
    Abstract: A method and system for determining training status of a user from exercises using a device with a heart rate sensor, a processor, memory, an output device and software. The training status is selected from a fixed group of alternatives. Each exercise is monitored using the heart rate sensor. Chosen exercise characteristics of each executed exercise are determined using obtained heart rate data and the determined characteristics of each executed exercise are stored in a memory. The chosen exercise characteristics include values of at least following variables: a date of the exercise, a value depicting physical readiness level for exercise during the exercise, a value depicting a training load of the exercise. When the exercises have been executed, values of selection variables are calculated using the stored exercise characteristics in the memory.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 9, 2020
    Assignee: Firstbeat Technologies Oy
    Inventors: Tero Myllymäki, Joonas Korhonen, Mikko Seppänen, Kaisa Hämäläinen, Veli-Pekka Kurunmäki
  • Patent number: 10675092
    Abstract: A microwave ablation device including a cable assembly configured to connect a microwave ablation device to an energy source and a feedline in electrical communication with the cable assembly. The microwave ablation device further includes a balun on an outer conductor of the feedline, and a temperature sensor on the balun sensing the temperature of the balun.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: June 9, 2020
    Assignee: COVIDIEN LP
    Inventors: Joseph D. Brannan, Casey M. Ladtkow, Darion R. Peterson, Eric W. Larson, William J. Dickhans, Richard A. Willyard, Jason A. Case
  • Patent number: 10673415
    Abstract: Techniques to generate two separate temperature independent reference voltages. The reference voltages can be generated using a chain of ?VBE cells. A cross-quad ?VBE-cell-based bandgap voltage reference can cancel out noise of associated current sources by forcing them to correlate. Several ?VBE stages can be cascaded together to generate an appreciable PTAT component that can cancel the CTAT component from VBE. In some example configurations, only BJTs are used—without requiring use of an amplifier—to generate the bandgap voltages; in this way, extremely low noise voltage references can be generated. The PTAT and the CTAT voltages can be combined to generate a bandgap voltage of approximately VG0 or approximately 2VG0.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: June 2, 2020
    Assignee: Analog Devices Global Unlimited Company
    Inventors: Gaurav Gupta, Arthur J. Kalb
  • Patent number: 10672518
    Abstract: Exemplified method and system facilitates monitoring and/or evaluation of disease or physiological state using mathematical analysis and machine learning analysis of a biopotential signal collected from a single electrode. The exemplified method and system creates, from data of a singularly measured biopotential signal, via a mathematical operation (i.e., via numeric fractional derivative calculation of the signal in the frequency domain), one or more mathematically-derived biopotential signals (e.g., virtual biopotential signals) that is used in combination with the measured biopotential signals to generate a multi-dimensional phase-space representation of the body (e.g., the heart). By mathematically modulating (e.g.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: June 2, 2020
    Assignee: Analytics For Life Inc.
    Inventors: Timothy Burton, Shyamlal Ramchandani, Sunny Gupta
  • Patent number: 10646130
    Abstract: An ECG system measures and annotates the P-point of an ECG waveform from harmonic waveforms. Electrical impulses are received from a beating heart. The electrical impulses are converted to an ECG waveform. The ECG waveform is converted to a frequency domain waveform, which, in turn, is separated into two or more different frequency domain waveforms, which, in turn, are converted into a plurality of time domain cardiac electrophysiological subwaveforms and discontinuity points between these subwaveforms. The plurality of subwaveforms and discontinuity points are compared to a database of subwaveforms and discontinuity points for normal and abnormal patients. A discontinuity point is identified as the P-point of the ECG waveform from the comparison. Similar measurements are made for the P?-point, I-point, J-point, and T?-point. Distances from these points to the equipotential line are calculated and used to detect blockages leading to myocardial infarction.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: May 12, 2020
    Inventors: Guangren Chen, Rong Yang
  • Patent number: 10638967
    Abstract: A handheld radio device that incorporates within equipment typically carried by a first-responder but with added functionality which enables assessments of a subject's cognitive, auditory, visual, and speech function. In addition to providing two-way tactical radio functionality, the handheld radio device operates to generate haptic, audible, and visual stimuli, and then assess a subject utilizing the handheld radio device based on the subject's responses to the stimuli on the interfaces and sensors of the handheld radio device. Because this functionality is provided in equipment this is already typically carried by the first-responder, assessments that are more forward-deployed and closer to the point and time of injury, exposure, or period of interest can occur.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: May 5, 2020
    Assignee: United States of America as represented by the Navy
    Inventor: Matthew A. Yanagi
  • Patent number: 10632014
    Abstract: An ophthalmic laser system includes a laser engine to generate a beam of femtosecond laser pulses, a laser scanner to scan each laser pulse of the beam in three dimensions according to a scan pattern, and a compound lens comprising a glass lens and a birefringent lens, the compound lens arranged to receive the scanned beam and configured to split each laser pulse of the scanned beam into an ordinary pulse and an extraordinary pulse, producing an ordinary beam comprising ordinary pulses and an extraordinary beam comprising extraordinary pulses. A particular ordinary pulse and a particular extraordinary pulse split from a particular laser pulse are spatially separated in depth along an optical axis of the compound lens, by a distance greater than or equal to 5 ?m, and temporally separated by a delay greater than or equal to a pulse duration of the femtosecond laser pulses. An objective is configured to focus the ordinary beam and the extraordinary beam within an ophthalmic target.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: April 28, 2020
    Assignee: Alcon Inc.
    Inventors: Zsolt Bor, Mikhail Ovchinnikov
  • Patent number: 10631750
    Abstract: An ECG system measures and annotates a subdivision of the P wave of the ECG waveform from harmonic waveforms. Electrical impulses are received from a beating heart. The electrical impulses are converted to an ECG waveform. The ECG waveform is converted to a frequency domain waveform, which, in turn, is separated into two or more different frequency domain waveforms, which, in turn, are converted into a plurality of time domain cardiac electrophysiological subwaveforms and discontinuity points between these subwaveforms. The plurality of subwaveforms and discontinuity points are compared to a database of subwaveforms and discontinuity points for normal and abnormal patients. Starting and ending discontinuity points are identified for a subdivision of the P wave of the ECG waveform and an APD is calculated for the subdivision. The ECG waveform is displayed along with a location of the P wave subdivision on the ECG waveform and the calculated APD.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: April 28, 2020
    Inventors: Guangren Chen, Rong Yang
  • Patent number: 10632312
    Abstract: Disclosed herein are portable and integrated modules and devices for non-intrusive neuromodulation and monitoring of heart function, and methods of operation thereof. The modules and devices include a monitoring unit, an electrical stimulation inducing unit, and three electrodes, such that one of the electrodes is dual-function, being controllably utilized for neuromodulation or for monitoring of heart function.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: April 28, 2020
    Assignee: ZIV HEALTHCARE LTD.
    Inventor: Amos Ziv
  • Patent number: 10617303
    Abstract: A functional optical coherent imaging (fOCI) platform includes at least one active camera unit (ACU) having a coherent and/or a partially coherent light source, and means for spectral filtering and imaging a selected body area of interest; an image processing unit (IPU) for pre-processing data received from an ACU; at least one stimulation unit (STU) transmitting a stimulation to a subject; at least one body function reference measurement unit (BFMU); a central clock and processing unit (CCU), with interconnections to the ACU, the IPU, the STU, for collecting pre-processed data from the IPU, stimuli from the STU body function reference data from the BFMU in a synchronized manner; a post-processing unit (statistical analysis unit, SAU); and an operator interface (HOD.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: April 14, 2020
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Theo Lasser, Dimitri Van De Ville, Erica Martin-Williams, Marcel Leutenegger, Iwan Maerki, Michael Friedrich, Martin Villiger
  • Patent number: 10602977
    Abstract: A monitor recorder optimized for electrocardiography and respiratory data acquisition and processing is provided.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: March 31, 2020
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Gust H. Bardy, Jon Mikalson Bishay, Jason Felix
  • Patent number: 10596377
    Abstract: A method for neuromodulation includes monitoring brain activity of a patient using one or more electrodes attached to the patient, and using a first machine learning model to predict whether a patient will have a seizure based on the monitored brain activity of the patient. The method also includes, responsive to the first machine learning model predicting that the patient will have a seizure, using a second machine learning model to determine a neuromodulation signal pattern for preventing the predicted seizure. The method further includes using a neurostimulator to apply the determined neuromodulation signal pattern to the patient. The method also includes, after applying the determined neuromodulation signal pattern to the patient, detecting whether the patient had the predicted seizure based on the monitored brain activity of the patient. The method further includes adjusting at least the second machine learning model based on whether the patient had the predicted seizure.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: March 24, 2020
    Assignee: International Business Machines Corporation
    Inventors: Stefan Harrer, Filiz Isabell Kiral-Kornek, Benjamin Scott Mashford, Subhrajit Roy, Susmita Saha
  • Patent number: 10583287
    Abstract: A method for aesthetic soft tissue treatment includes placing at least one applicator in contact with the patient's body. The applicator has at least one electrode. Electrotherapy and radio frequency therapy are provided to the soft tissue, optionally with overlay or sequentially. A handheld applicator may be used, with the applicator moving during the therapy, which may provide muscle stimulation in the patient, or provide an analgesic effect during the treatment. A spacing object may be positioned between the skin of the patient and the applicator.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: March 10, 2020
    Assignee: BTL MEDICAL TECHNOLOGIES S.R.O.
    Inventor: Tomás Schwarz
  • Patent number: 10582874
    Abstract: Methods and devices are provided comprising an implantable lead having electrodes configured to be located proximate to a heart, the electrodes defining a sensing vector through a region of interest in the heart. The method and system collect an intra-cardiac electrogram (EGM) signal associated with an event of interest and determining an global amplitude characteristic (GAC) and a global slope characteristic (GSC) from the EGM signal under control of one or more processors within an implantable medical device (IMD). A QRS start time is defined, within the EGM signal, based on the GSC and determining a local amplitude characteristic (LAC) for a segment of the EGM signal within a search window of the GAC under control of one or more processors within an implantable medical device (IMD) A QRS end time is defined, within the EGM signal, based on the LAC; and calculating a QRS duration based on the QRS start time and QRS end time under control of one or more processors within an implantable medical device (IMD).
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: March 10, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Jan Mangual-Soto, Luke McSpadden
  • Patent number: 10580532
    Abstract: A method and apparatus for determining training status from a group of alternatives from a plurality of exercises, where a user has frequently monitored exercises with at least heart rate being measured by a host process, which outputs selected variables for calculating the training status by a child process.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: March 3, 2020
    Assignee: Firstbeat Technologies Oy
    Inventors: Kaisa Hämäläinen, Aki Pulkkinen, Mikko Seppänen, Tuomas Järvinen, Joonas Korhonen, Tero Myllymäki
  • Patent number: 10576191
    Abstract: An implantable blood pump including an inflow cannula, the inflow cannula having a malleable tube including an inflow portion, a steering assembly coupled to the inflow portion of the tube, an actuator coupled to the steering assembly for applying a force to the tube, and a cannula tip extending from the inflow portion of the tube and defining an aperture in fluid communication with the tube.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: March 3, 2020
    Assignee: HeartWare, Inc.
    Inventor: Jeffrey A. LaRose
  • Patent number: 10576285
    Abstract: An example of a system for modulating blood pressure may include a blood pressure monitoring circuit, a blood pressure modulation device, and a control circuit. The blood pressure monitoring circuit may be configured to sense signals and generate one or more blood pressure parameters indicative of the blood pressure and/or a vascular resistance and one or more activity parameters indicative of an activity level and/or a postural change using the sensed signals. The blood pressure modulation device may be configured to deliver a therapy modulating the blood pressure. The control circuit may be configured to control the therapy using therapy parameters, receive the one or more blood pressure parameters and the one or more activity parameters, analyze changes in the one or more blood pressure parameters that are correlated to changes in the one or more activity parameters, and adjust the therapy parameters using an outcome of the analysis.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 3, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Elizabeth Mary Annoni, Kyle Harish Srivastava, Craig Stolen, Pramodsingh Hirasingh Thakur, Bradley Lawrence Hershey, Stephen B. Ruble, William Conrad Stoffregen, Bryan Allen Clark
  • Patent number: 10568806
    Abstract: An electrical discharge device including an array of spring-load electrical contacts, said contacts electrically coupled to a multiplexer and a programmable power supply; a processor, said processor coupled to the power supply and the multiplexer; a memory, coupled to said processor, said memory including non-transitory, processor instructions operable to direct the processor to perform a method including measuring relative resistance between each pair of said electrical contacts, and applying a pre-determined electrical discharge to a pair of the electrical contacts in response to said measuring. Embodiment includes applying at least a portion of the electrical contacts to human skin substantially near an acupoint wherein said pair of electrical contacts is the pair having the least resistance between them.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: February 25, 2020
    Assignee: Mindframers, Inc.
    Inventors: Allen Hirashiki, Carl J. Bailey, John Levy
  • Patent number: 10561330
    Abstract: An implantable medical device (IMD) may include a sensor for providing a sensor output signal and a sense channel configured to receive the sensor output signal from the sensor. The sense channel may be configured to process the sensor output signal and output a sense channel output signal. The sense channel may have an adjustable performance level, wherein for a higher performance level the sense channel consumes more power than for a lower performance level. A controller may be configured to adjust the performance level of the sense channel to achieve more performance and more power consumption when a higher degree of sense channel performance is desired and to achieve less performance and less power consumption when a higher degree of performance is not desired.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: February 18, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Aleksandra Kharam, Ron A. Balczewski, Paul Huelskamp, Lance Eric Juffer, Keith R. Maile
  • Patent number: 10561849
    Abstract: Systems, apparatus, methods and computer-readable storage media that facilitate monitoring the integrity of telemetry connectivity between an implantable device and an external device are provided. In one embodiment, an implantable device includes a monitoring component that monitors advertisement signal information identifying an amount of advertisement signals transmitted to the external device within a defined time period, and telemetry session information identifying an amount of the telemetry sessions that are established between the external device and the implantable device within the defined time period. A connectivity assessment component of the implantable device further determines whether a telemetry connectivity problem exists between the external device and the implantable device based on a degree of miscorrelation between the advertisement signal information and the telemetry session information.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: February 18, 2020
    Assignee: Medtronic, Inc.
    Inventors: Matthew R. Yoder, Bo Zhang, Gary P. Kivi, Richard A. Sanden