Patents Examined by George R. Evanisko
  • Patent number: 11324543
    Abstract: Apparatuses, systems and methods are provided for treating pulmonary tissues via delivery of energy, generally characterized by high voltage pulses, to target tissue using a pulmonary tissue modification system (e.g., an energy delivery catheter system). Example pulmonary tissues include, without limitation, the epithelium (the goblet cells, ciliated pseudostratified columnar epithelial cells, and basal cells), lamina propria, submucosa, submucosal glands, basement membrane, smooth muscle, cartilage, nerves, pathogens resident near or within the tissue, or a combination of any of these. The system may be used to treat a variety of pulmonary diseases or disorders such as or associated with COPD (e.g., chronic bronchitis, emphysema), asthma, interstitial pulmonary fibrosis, cystic fibrosis, bronchiectasis, primary ciliary dyskinesia (PCD), acute bronchitis and/or other pulmonary diseases or disorders.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: May 10, 2022
    Assignee: Galvanize Therapeutics, Inc.
    Inventors: Jonathan Reuben Waldstreicher, William Sanford Krimsky, Denise M. Zarins, Robert J. Beetel, Paul Brian Friedrichs, Kevin James Taylor, Roman Turovskiy, Robert E. Neal, II
  • Patent number: 11324953
    Abstract: A patient control is disclosed that facilitates operation of an implantable medical device.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: May 10, 2022
    Assignee: Inspire Medical Systems, Inc.
    Inventors: John Rondoni, Blake D. Johnson, Quan Ni
  • Patent number: 11311732
    Abstract: The present invention is generally directed to methods, systems, and computer program products for coordinating musculoskeletal and cardiovascular hemodynamics. In some embodiments, a heart pacing signal causes heart contractions to occur with an essentially constant time relationship with respect to rhythmic musculoskeletal activity. In other embodiments, prompts (e.g., audio, graphical, etc.) are provided to a user to assist them in timing of their rhythmic musculoskeletal activity relative to timing of their cardiovascular cycle. In further embodiments, accurately indicating a heart condition during a cardiac stress test is increased.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: April 26, 2022
    Assignee: Pulson, Inc.
    Inventors: Jeffery L. Bleich, Paul Mannheimer, Darin Howard Buxbaum
  • Patent number: 11304626
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: April 19, 2022
    Assignee: Chang Gung University
    Inventors: Wen-Yen Lin, Ming-Yih Lee, Po-Cheng Chang, Wen-Zheng Zhou
  • Patent number: 11266834
    Abstract: An electro-acupuncture (EA) system and method for performing EA on a patient are provided. The EA system comprises a wearable neurostimulator device, at least a first pair of electrically-conductive acupuncture needles and a system controller. The wearable neurostimulator device comprises a casing, an EA circuit mechanically coupled to the casing, and an attachment device mechanically coupled to the casing and adapted to removably secure the wearable neurostimulator device to the patient. The first pair of electrically-conductive acupuncture needles is mechanically coupled to the casing and electrically coupled to the EA circuit. The system controller is in communication with the EA circuit of the wearable neurostimulator device via a communication link and controls the EA circuit to cause the EA circuit to output an output voltage selected by the system controller at a frequency selected by the system controller.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: March 8, 2022
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Jin-Woo Choi, Jose Aquiles Parodi Amaya, Ronald Koh
  • Patent number: 11266831
    Abstract: Cochlear implant systems can include first and second subsystems, each subsystem including an input source, a signal processor, a stimulator, and a cochlear electrode. A single implantable battery and/or communication module can provide power to and communicate with each subsystem, such as via each signal processor. Systems can include separate leads providing separate communication between the implantable battery and/or communication module and each subsystem, or can include a bifurcated lead providing signals to both subsystems simultaneously. The implantable battery and/or communication module can be configured to output addressed signals designating for which subsystem a signal is intended. The implantable battery and/or communication module can be configured to separately update settings associated with each respective subsystem, such as a transfer function associated with each signal processor.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 8, 2022
    Assignee: Envoy Medical Corporation
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest, Joshua J. Wibben
  • Patent number: 11260227
    Abstract: A method of calibrating stimulation threshold levels of a cochlear implant, comprises sending a series of stimulation signals having a predetermined length in time to a selected subset of a plurality of stimulation electrodes of the cochlear implant of a user, wherein for each signal of the series of stimulation signals, the stimulation level is larger compared to the stimulation level of the previous stimulation signal; receiving an electrophysiological signal for each stimulation signal from a measurement electrode attached to the head of the user; calculating a cross-correlation signal for each of the received electrophysiological signals for each stimulation level following the first stimulation signal with respect to the first electrophysiological signal received for the first stimulation signal, determining, whether the respective cross-correlation signal exceeds a predetermined threshold level, wherein the sending of the series of stimulation signals is stopped and the stimulation level is set as the t
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: March 1, 2022
    Assignee: OTICON MEDICAL A/S
    Inventors: Pierre Stahl, Dan Gnansia
  • Patent number: 11260220
    Abstract: Cochlear implant systems can include a signal processor, an implantable battery and/or communication module, and a plurality of conductors coupling the implantable battery and/or communication module and the signal processor. The implantable battery and/or communication module can communicate data and deliver electrical power to the signal processor via the plurality of conductors. The implantable battery and/or communication module can be configured to perform characterization process to determine one or more characteristics of one or more such conductors. Characterization processes can include determining an impedance between two conductors as a function of frequency, determining whether a conductor is intact, and determining an impedance of a given conductor. Some characterization processes include grounding one or more conductors.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 1, 2022
    Assignee: Envoy Medical Corporation
    Inventors: Paul R. Mazanec, Joshua J. Wibben, Timothy J. Earnest
  • Patent number: 11260233
    Abstract: According to some aspects, a cardiac pacemaker for implantation within a subject is provided, the pacemaker including a housing, at least one sensor configured to detect an activity level of the subject, and at least one processor coupled to the sensor configured to detect inactivity of the subject based on output from the at least one sensor, produce a first signal configured to increase the heart rate of the subject to a first heart rate during a first time period, wherein the first heart rate is above a resting heart rate and below 100 beats per minute, and in response to determining that the first time period has elapsed, producing a second signal configured to increase the heart rate of the subject to a second heart rate during a second time period, wherein the second heart rate is between 100 and 140 beats per minute.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: March 1, 2022
    Assignee: The University of Vermont and State Agricultural College
    Inventor: Markus Meyer
  • Patent number: 11253695
    Abstract: A handheld, therapeutic electrode and connector that are compatible with high voltages from a pulse generator are disclosed. The electrode includes therapeutic terminals on a tip configured to deliver high voltage pulses safely to a patient. The electrode includes sleeves, bosses, wiring channels, and other features that maximize a minimum clearance distance (across non-conductive surfaces) and air clearance between conductive connectors themselves or the connectors and a user, thus preventing dangerous arcing. Internal surfaces and seams are taken into account. The connector and its mating outlet can include similar features to maximize clearance distance. Skirts, skirt holes, and finger stops are also employed, and they can be on either the connector or outlet, or the tip or handle of the electrode.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: February 22, 2022
    Assignee: PULSE BIOSCIENCES, INC.
    Inventors: Mark P. Kreis, David J. Danitz, Cameron D. Hinman, Sean N. Finson
  • Patent number: 11235141
    Abstract: Disclosed are systems and methods for use of an inductive link for a communication channel in a transcutaneous energy transfer system. An example system may include a resonant circuit associated with an external primary, a power transistor connected to the resonant circuit and configured to drive the resonant circuit with a first time-varying electrical signal having a frequency, and a power driver connected to the power transistor that is configured to set the frequency of the first time-varying electrical signal to a resonant frequency to enable power transfer from the external primary to an implanted secondary. The example system may further include a communication driver operatively connected to the power transistor and configured to encode the first time-varying electrical signal with a data signal by modulating an attribute of the time-varying electrical signal as electrical power is transferred from the external primary to the implanted secondary.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: February 1, 2022
    Assignee: Minnetronix, Inc.
    Inventors: Lori Lucke, Vlad Bluvshtein, James Kurkowski, William Weiss
  • Patent number: 11235161
    Abstract: Ventricle-from-atrium (VfA) cardiac therapy may utilize a tissue-piercing electrode implanted in the left ventricular myocardium of the patient's heart from the right atrium through the right atrial endocardium and central fibrous body. The exemplary devices and methods may determine whether the tissue-piercing electrode is achieving effective left ventricular capture. Additionally, one or more pacing parameters, or paced settings, may be adjusted in view of the effective left ventricular capture determination.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: February 1, 2022
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 11229795
    Abstract: Cardiac resynchronization therapy (CRT) delivered to a heart of a patient may be adjusted based on detection of a surrogate indication of the intrinsic atrioventricular conduction of the heart. In some examples, the surrogate indication is determined to be a sense event of the first depolarizing ventricle of the heart within a predetermined period of time following the delivery of a fusion pacing stimulus to the later depolarizing ventricle. In some examples, the CRT is switched from a fusion pacing configuration to a biventricular pacing configuration if the surrogate indication is not detected, and the CRT is maintained in a fusion pacing configuration if the surrogate indication is detected.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: January 25, 2022
    Assignee: Medtronic, Inc.
    Inventors: Aleksandre Sambelashvili, Thomas J. Mullen, Todd J. Sheldon
  • Patent number: 11229363
    Abstract: Provided are apparatuses and methods for detecting biological information. An apparatus for detecting biological information may include a biological signal measurement unit having at least two light emission elements having different light emission angles. The at least two light emission elements may include different types of light sources. The at least two light emission elements may include multiple light sources of the same type, and in this case, an optical element configured to adjust a light emission angle of one of the light sources may be provided. The apparatus for detecting biological information may include a biological signal measurement unit including a light emitting unit having variable light emission angle. The apparatus for detecting biological information may further include a data processor configured to extract and analyze biological information of a subject from data measured by the biological signal measurement unit.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: January 25, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yongjoo Kwon, Jaemin Kang, Sunkwon Kim
  • Patent number: 11229787
    Abstract: A plurality of individually addressable electrodes is supported by a housing. The individually addressable electrodes are for at least one of applying stimulation electrical signals to skin of a user and detecting biometric electrical signals from the skin of the user. At least one of a signal detector is provided for detecting the biometric electrical signals and a signal generator is provided for generating the stimulation electrical signals. An electrode multiplex circuit is provided for addressing the plurality of individually addressable electrodes by at least one of routing the biometric electrical signals from the skin of the user through more than one of the plurality of individually addressable electrodes to the signal detector and routing the stimulation electrical signals from the signal generator through more than one of the plurality of individually addressable electrode to the skin of the user.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: January 25, 2022
    Assignee: Kinaptic, LLC
    Inventors: John Daniels, Joseph Curcio, James Cavadini, Christopher Pribish
  • Patent number: 11219773
    Abstract: The present disclosure relates to an electrical connector cap, in particular for an implantable lead, the electrical connector cap comprising an elongated body having at least one lumen and at least one through hole extending from an outer surface of the elongated body into the lumen, and at least one electrically conductive member arranged on an outer circumference of the elongated body over said at least one through hole of the elongated body. Furthermore, said at least one electrically conductive member comprises at least one through hole (extending from an outer surface of the electrically conductive member into the lumen through said at least one through hole of the elongated body. The disclosure further relates to implantable lead assemblies comprising said electrical connector cap, and to an implantable lead member usable with said electrical connector cap.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: January 11, 2022
    Assignee: Sorin CRM SAS
    Inventor: Jean-Francois Ollivier
  • Patent number: 11207516
    Abstract: Disclosed is a distributed transformer or extension cord component for a transcutaneous energy transfer system used to transfer electric power to an implanted medical device. The extension cord component may enable power transfer to occur at various points on or near the body of the subject within whom the medical device is implanted. In this way, the subject may gain greater flexibility and high levels of convenience in connection with use of the transcutaneous energy transfer system.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: December 28, 2021
    Assignee: Minnetronix, Inc.
    Inventors: Vlad Bluvshtein, Lori Lucke
  • Patent number: 11197637
    Abstract: A system includes a controller coupled to one or more sensors. The controller receives sensor data indicative of biometric data an occupant of a vehicle seat from the sensors. The controller receives the sensor data and analyzes the data to provide biometric data associated with the occupant of the vehicle seat.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: December 14, 2021
    Assignee: Faurecia Automotive Seating, LLC
    Inventors: Sean M. Montgomery, Pioter Drubetskoy
  • Patent number: 11191964
    Abstract: Devices, systems, and methods incorporate the most-used functions of an electrical stimulator's controller into a small, thin pocket controller that is not only comfortable to carry in a pocket, but can also be attached to a key ring, lanyard, or other such carrying device for ease of daily use. A separate patient controller charger is used to charge and control the implanted medical device.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: December 7, 2021
    Assignee: CIRTEC MEDICAL CORPORATION
    Inventors: Steven E Wilder, Michael S. Labbe, Jeff Gagnon, Benjamin Cottrill
  • Patent number: 11179109
    Abstract: An apparatus comprises an input configured to receive electrocardiogram (ECG) data detected by a patient monitoring device, the ECG data containing a physiologic signal and one or more segments of noise within the ECG data. A scrubber comprises a plurality of scrubbing modules each configured to process the ECG data and noise in a manner differing from other scrubbing modules. The scrubber is configured to filter the one or more noise segments that overlap with the physiologic signal, and consolidate the ECG data to eliminate the one or more noise segments that are non-overlapping with the physiologic signal. An output is configured to output scrubbed ECG data.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: November 23, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Rodolphe Katra, Tyler Stigen, Niranjan Chakravarthy