Patents Examined by George R. Evanisko
  • Patent number: 10864372
    Abstract: A computer implemented method and system is provided for managing neural stimulation therapy. The method comprises under control of one or more processors configured with program instructions. The method delivers a series of candidate stimulation waveforms having varied stimulation intensities to at least one electrode located proximate to nervous tissue of interest. A parameter defines the candidate stimulation waveforms is changed to vary the stimulation intensity. The method identifies a first candidate stimulation waveform that induces a paresthesia-abatement effect, while continuing to induce a select analgesic effect. The method further identifies a second candidate stimulation waveform that does not induce the select analgesic effect. The method sets a stimulation therapy based on the first and second candidate stimulation waveforms.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: December 15, 2020
    Inventors: Xiaoyi Min, Alexander Kent, Richard Williamson
  • Patent number: 10856763
    Abstract: A method of detecting abnormal heartbeats includes providing a library of abnormal beat synthesis (ABS) filters, wherein each ABS filter corresponds to a specific cause of a cardiac problem. The method further includes obtaining an ECG of a normal heartbeat of a person and applying an ABS filter from the library of ABS filters to the ECG of the normal heartbeat of the person to generate a potential abnormal ECG. The method further includes monitoring a heartbeat of the person and classifying each heartbeat as either normal or abnormal.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: December 8, 2020
    Assignee: QATAR UNIVERSITY
    Inventors: Serkan Kiranyaz, Turker Ince, Moncef Gabbouj
  • Patent number: 10857273
    Abstract: Blood pump devices having improved rotary seals for sealing a bearing assembly supporting a rotor provided herein. Such rotary seals are particularly suited for use in blood pump devices that include rotors having cantilevered supported through a sealed mechanical bearing disposed outside a blood flow path of the device to avoid thrombus formation caused by blood contact with the bearing. The rotary seal can include a first and second face seal that are preloaded with a deflectable compliance member incorporated into the pump housing or a pair of magnets. Such rotary seals can instead or further utilize tight fitment between components or a bio-absorbable fill material to seal an interface between the rotor shaft and pump housing to seal the bearing assembly from fluid flowing through the pump.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: December 8, 2020
    Assignee: TC1 LLC
    Inventors: William V. Hodges, Ian McEachern, Eric T. Lee
  • Patent number: 10850067
    Abstract: Implantation of a cardiac stimulus system using the ITV. Access to the ITV may be performed using the intercostal vein as an access point, and entering the ITV through an ostium therebetween. The intercostal vein may be located on a costal groove on an inferior portion of a rib. Advancement from the intercostal vein to the ITV may then be performed in a superior direction, an inferior direction, or both.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 1, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: G. Shantanu Reddy, Peter Hall, Andrew L. De Kock, Christopher Alan Fuhs, Daniel J. Foster, James K. Cawthra, Jr.
  • Patent number: 10835736
    Abstract: An EMS exercise device is provided which includes EMS electrodes and at least one sacrificial anode, preferably a dedicated sacrificial anode for each EMS electrode. The at least one sacrificial anode is connected to the EMS electrodes in an electrically conductive manner in order to protect the EMS electrodes and/or other elements in the electrically conductive connections from corrosion. In addition, an EMS electrode with a sacrificial anode, an EMS garment a sacrificial anode, an EMS signal cable a sacrificial anode, an EMS pulse generating unit a sacrificial anode, and an EMS undergarment with a sacrificial anode for an EMS exercise device are provided, and a method for operating an EMS exercise device, for which a sacrificial anode is provided.
    Type: Grant
    Filed: March 5, 2017
    Date of Patent: November 17, 2020
    Assignee: Miha Bodytec GmbH
    Inventors: Hansjürgen Horter, Peter Österreicher, Jürgen Decker, Jonas Peinze
  • Patent number: 10828488
    Abstract: The self-contained endocavitary probe device for managing stress incontinence is capable of being inserted into the vaginal or rectal cavity of a person. The device includes at least one self-contained electrical power supply so as to supply power to at least one device for measuring the variation in a parameter resulting from physical stress and to at least one electrical muscle stimulation device in contact with at least one muscle capable of maintaining urinary continence. The electrical stimulation device is activated in the event of variation in the parameter.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: November 10, 2020
    Assignee: AKSE
    Inventor: Georges Billard
  • Patent number: 10828673
    Abstract: An ultrasound transducer arrangement (100) is disclosed comprising a plurality of substrate islands (110, 120, 130) spatially separated and electrically interconnected by a flexible polymer assembly (150) including electrically conductive tracks providing said electrical interconnections, said plurality including a first substrate island (110) comprising a plurality of ultra sound transducer cells (112) and a second substrate island (120) comprising an array of external contacts for connecting the ultrasound sensor arrangement to a flexible tubular body including a coaxial wire assembly (200) comprising a plurality of coaxial wires (220) each having a conductive core (228) covered by an electrically insulating sleeve (226); and an electrically insulating body (210) having a first main surface (211), a second main surface (213) and a plurality of through holes (212) each extending from the first main surface to the second main surface and coated with an electrically conductive member, wherein each coaxial wire
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: November 10, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Vincent Adrianus Henneken, Marcus Cornelis Louwerse, Johannes Wilhelmus Weekamp, Ronald Dekker, Marc Godfriedus Marie Notten, Antonia Cornelia Jeannet Van Rens
  • Patent number: 10821282
    Abstract: Disclosed herein is an implantable medical device for implantation against cardiac tissue in the administration of electrotherapy to the cardiac tissue. The device includes a distal end and a monolithic controlled release device. The distal end includes a housing structure and a cavity within the housing structure. The cavity opens exterior the implantable medical device via a distal opening. The monolithic controlled release device is within the cavity and proximal the distal opening. The monolithic controlled release device includes a distal face, a proximal face opposite the distal face, an outer circumferential surface extending between the distal face and the proximal face, and a spline-shaped inner lumen extending between the distal face and the proximal face and radially inward from the outer circumferential surface. The monolithic controlled release device further includes an active pharmaceutical ingredient.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: November 3, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Tyler J. Strang, Benjamin F. James, IV, Matthew Malone
  • Patent number: 10806930
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can quantitatively forecast and determine the timing of an early replacement indicator (tEOLi) and an IMD End of Life (tEOL). These forecasts and determinations of tEOLi and tEOL occur in accordance with one or more parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, determines and forecasts tEOLi and tEOL. Such forecasted or determined values may also be used by a shutdown algorithm to suspend therapeutic operation of the IMD.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 20, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Patent number: 10799151
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: October 13, 2020
    Assignee: Chang Gung University
    Inventors: Wen-Yen Lin, Ming-Yih Lee, Po-Cheng Chang, Wen-Zheng Zhou
  • Patent number: 10786679
    Abstract: A lead for use with cardiac stimulus device with at least two electrodes positioned at a single longitudinal location is provided. The electrodes may include a shocking coil electrode and a sensing and/or pacing ring electrode and may be separated by an insulating element. The at least two electrically insulated electrodes may be electrically isolated and serve separate purposes in the device.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: September 29, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: G. Shantanu Reddy, Andrew L. De Kock, Peter Hall
  • Patent number: 10765329
    Abstract: Provided is a system and method of generating an aggregated stability map of one or more rotational sources associated with a heart rhythm disorder. In accordance therewith, a plurality of rotational area profile maps is accessed for a plurality of analysis intervals. Each of the rotational area profile maps includes rotation intensity values for a plurality of locations associated with rotation of the one or more rotational sources. Thereafter, an aggregated stability map is generated map based on the plurality of rotational area profile maps, wherein the aggregated stability map includes a plurality of locations. Each location includes a rotation intensity value based at least on a filter level of highest rotation intensity values for that location from corresponding locations of the plurality of rotational area profile maps.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: September 8, 2020
    Assignee: Topera, Inc.
    Inventors: William Robert Macneil, Carey Robert Briggs, Christopher Todd Schuster, Heather A. Drury
  • Patent number: 10758147
    Abstract: Cardiac activity can be mapped by receiving an electrogram, transforming the electrogram into the wavelet domain (e.g., using a continuous wavelet transformation) to create a scalogram of the electrogram, computing at least one energy function of the scalogram, and computing at least one metric of the electrogram using the at least one energy function. The metrics of the electrogram can include, without limitation: a QRS activity duration for the electrogram; a near-field component duration for the electrogram; a far-field component duration for the electrogram; a number of multiple components for the electrogram; a slope of a sharpest component of the electrogram; a scalogram width; an energy ratio in the electrogram; and a cycle-length based metric of the electrogram.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: September 1, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Jatin S. Relan, Valtino X. Afonso
  • Patent number: 10744319
    Abstract: Disclosed is a system including an electrode and a stylet configured to steer the electrode towards its intended position during implantation, and a method for such system's use. An electrode is provided having regions with varied flexibility. A stylet having bends that are indexed to specific regions of flexibility of the electrode may be inserted into the electrode, and upon minimal radial and/or longitudinal movement of the stylet within the electrode, will cause the magnitude of the angle to which the lead is bent to either increase or decrease so as to aid the operator in placement of the electrode.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: August 18, 2020
    Inventor: Richard B. North
  • Patent number: 10743797
    Abstract: A sensor for detecting micro-movements is provided herein. In various embodiments, the sensor includes a looped structure formed of a continuous multi-mode optical fiber arranged into a plurality of loops disposed substantially in a plane. Each loop within the looped structure is partially overlapping yet laterally offset from neighboring loops. The sensor further includes a light source coupled to a first end of the looped structure, a receiver coupled to a second end of the looped structure, and one or more control and processing modules. Related methods of manufacture and use are also disclosed.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: August 18, 2020
    Assignee: SHENZHEN DARMA TECHNOLOGY CO. LTD.
    Inventor: Junhao Hu
  • Patent number: 10729375
    Abstract: The invention provides a sensor for measuring both impedance and ECG waveforms that is configured to be worn around a patient's neck. The sensor features 1) an ECG system that includes an analog ECG circuit, in electrical contact with at least two ECG electrodes, that generates an analog ECG waveform; and 2) an impedance system that includes an analog impedance circuit, in electrical contact with at least two (and typically four) impedance electrodes, that generates an analog impedance waveform. Also included in the neck-worn system are a digital processing system featuring a microprocessor, and an analog-to-digital converter. During a measurement, the digital processing system receives and processes the analog ECG and impedance waveforms to measure physiological information from the patient. Finally, a cable that drapes around the patient's neck connects the ECG system, impedance system, and digital processing system.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: August 4, 2020
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Matthew Banet, Susan Meeks Pede, Marshal Singh Dhillon, Kenneth Robert Hunt
  • Patent number: 10716939
    Abstract: An example method includes sending a muscle stimulation current treatment signal to one or more electrodes. The muscle stimulation current treatment signal alternates between on-off states. The method further includes sending, while the muscle stimulation current treatment signal is off, an interferential current treatment signal to the one or more electrodes.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: July 21, 2020
    Assignee: International Rehabilitative Sciences, Inc.
    Inventors: Randy Alan Murphy, William J. Carroll, Richard M. Terrell
  • Patent number: 10716937
    Abstract: Recovery circuitry for passively recovering charge from capacitances at electrodes in an Implantable Pulse Generator (IPG) is disclosed. The passive recovery circuitry includes passive recovery switches intervening between each electrode node and a common reference voltage, and each switch is in series with a variable resistance that may be selected based on differing use models of the IPG. The passive recovery switches may also be controlled in different modes. For example, in a first mode, the only recovery switches closed after a stimulation pulse are those associated with electrodes used to provide stimulation. In a second mode, all recovery switches are closed after a stimulation pulse, regardless of the electrodes used to provide stimulation. In a third mode, all recovery switches are closed continuously, which can provide protection when the IPG is in certain environments (e.g., MRI), and which can also be used during stimulation therapy itself.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: July 21, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Jordi Parramon
  • Patent number: 10716932
    Abstract: Improved stimulation circuitry for controlling the stimulation delivered by an implantable stimulator is disclosed. The stimulation circuitry includes memory circuitry that stores pulse programs that define pulse shapes, steering programs that define electrode configurations, and aggregate programs that link a selected pulse program with a selected steering program. Each steering program defines the stimulation polarity and the allocation of current of the specified stimulation polarity for each of the pulse generator's electrodes. Each pulse program includes one or more pulse instructions, where each instruction defines the parameters of a single phase of the pulse program. Pulse definition circuits in the stimulation circuitry execute aggregate programs to generate stimulation waveforms, which stimulation waveforms can be generated simultaneously by the different pulse definition circuits.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: July 21, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Philip Leonard Weiss, Goran N. Marnfeldt, David Michael Wagenbach
  • Patent number: 10695568
    Abstract: A treatment system and method for inducing endogenous release of peptides is provided including a concha apparatus including a first electrode in contact with vagal related neural structures; an earpiece connected to the concha apparatus by a first connector, the earpiece including a PCB layer including a second electrode configured to be in contact with a neural structure related to the auriculotemporal nerve, and at least another electrode configured to be in contact with or in proximity to neural structures related to the great auricular nerve and/or its branches and/or the lesser occipital nerve and/or its branches, and an adhesive configured to secure the electrodes on the earpiece to the skin; and a pulse generator connected to the earpiece by a second connector, the pulse generator including circuitry in communication with the first electrode of the concha apparatus, the second electrode and the at least another electrode of the earpiece.
    Type: Grant
    Filed: July 14, 2019
    Date of Patent: June 30, 2020
    Assignee: Spark Biomedical, Inc.
    Inventor: Alejandro Covalin