Patents Examined by Gordon Baldwin
  • Patent number: 10435786
    Abstract: Alignment systems employing actuators provide relative displacement between lid assemblies of process chambers and substrates, and related methods are disclosed. A process chamber includes chamber walls defining a process volume in which a substrate may be placed and the walls support a lid assembly of the process chamber. The lid assembly contains at least one of an energy source and a process gas dispenser. Moreover, an alignment system may include at least one each of a bracket, an interface member, and an actuator. By attaching the bracket to the chamber wall and securing the interface member to the lid assembly, the actuator may communicate with the bracket and the interface member to provide relative displacement between the chamber wall and the lid assembly. In this manner, the lid assembly may be positioned relative to the substrate to improve process uniformity across the substrate within the process chamber.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: October 8, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Danny D. Wang, Jun Tae Choi, Rupankar Choudhury, Zhong Qiang Hua, Juan Carlos Rocha-Alvarez, Jason Michael Lamb
  • Patent number: 10436985
    Abstract: The invention relates to a method for producing an optical waveguide (1), the surface of which is at least partly coated with a coating material. The coating material contained in a target (4) is removed using laser radiation (6) of a processing laser or converted into another aggregate state. The coating material is then deposited on the surface of the waveguide (1) and forms a coating thereon, said coating modifying the light guidance. It is the object of the present invention to provide an improved method for producing optical waveguides, in which guidance of undesired electromagnetic radiation and/or guidance of radiation in undesired areas of the waveguide is avoided. To this effect, the present invention proposes that the laser radiation (7) reflected from the target (4) or transmitted through the target heats-up the waveguide (1), said laser radiation (6) being polarized and impinging the target (4) at a specified angle (?) between 10° and 80° relative to the surface normal.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: October 8, 2019
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Steffen Bohme, Thomas Schreiber, Gerd Harnisch
  • Patent number: 10418258
    Abstract: A temperature of only a part in a surface of a mounting table can be set to be higher than or lower than a set temperature of an entire surface of the mounting table. A main flow path 320 formed within the mounting table 200 to be arranged over the entire surface thereof; an auxiliary flow path 330 formed within the mounting table to be arranged in a part of the surface thereof; and a temperature control medium circulating unit that supplies and circulates a temperature control medium adjusted to have a set temperature into and through the main flow path, allows the temperature control medium to be branched, and supplies and circulates the branched temperature control medium into and through the auxiliary flow path after adjusting a temperature of the branched temperature control medium to be a temperature higher than or lower than the set temperature are provided.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: September 17, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Ryo Nonaka
  • Patent number: 10403443
    Abstract: A solid electrolytic capacitor and method for forming a solid electrolytic capacitor with high temperature leakage stability is described. The solid electrolytic capacitor has improved leakage current and is especially well suited for high temperature environments such as down-hole applications.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: September 3, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Antony P. Chacko, Randolph S. Hahn, Pablo Antonio Ruiz
  • Patent number: 10401285
    Abstract: The present invention relates to an apparatus for measuring surface properties of a polishing pad which measures surface properties such as surface topography or surface condition of a polishing pad used for polishing a substrate such as a semiconductor wafer. The apparatus for measuring surface properties of a polishing pad includes a laser beam source configured to emit a laser beam, and a photodetector configured to detect scattered light that is reflected and scattered by the polishing pad, an optical Fourier transform being performed on the detected scattered light to produce an intensity distribution corresponding to a spatial wavelength spectrum based on surface topography of the polishing pad. The laser beam is applied to the polishing pad at such an incident angle that the laser beam does not reach a bottom portion of a pore formed in the surface of the polishing pad.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: September 3, 2019
    Assignees: EBARA CORPORATION, Kyushu Institute of Technology
    Inventors: Hisanori Matsuo, Keiichi Kimura, Keisuke Suzuki, Panart Khajornrungruang, Takashi Kushida
  • Patent number: 10357799
    Abstract: A method for producing an assembly of particles bound by a substrate, including: making a compact film of solid particles floating on a carrier liquid, the solid particles potentially holding objects between them; spraying particles onto a face of the compact film opposite to the one immersed in a carrier liquid, to create a substrate-forming-skin adhering to the solid particles; and extracting an obtained assembly outside the carrier liquid.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: July 23, 2019
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Olivier Dellea, Philippe Coronel, Nicolas Dreuilles, Pascal Fugier
  • Patent number: 10361016
    Abstract: A one-pot process for the electroless-plating of silver onto graphite powder is disclosed. No powder pretreatment steps for the graphite, which typically require filtration, washing or rinsing, are required. The inventive process comprises mixing together three reactant compositions in water: an aqueous graphite activation composition comprising graphite powder and a functional silane, a silver-plating composition comprising a silver salt and a silver complexing agent, and a reducing agent composition.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: July 23, 2019
    Assignee: HENKEL IP & HOLDING GMBH
    Inventors: Jie Cao, Wenhua Huang, Allison Yue Xiao
  • Patent number: 10352448
    Abstract: A method for manufacturing a seal is disclosed. The method includes forming a layer of a hardened metal layer on a metal base plate. Further, the method includes melting the layer of the hardened metal in a nitrogen atmosphere to form a layer of metal nitride. Furthermore, the method includes depositing a plurality of layers of a metal alloy on the layer of metal nitride to form a main seal body portion, wherein the layer of metal nitride and the main seal body portion together correspond to the seal.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: July 16, 2019
    Assignee: Caterpillar Inc.
    Inventors: Thierry Marchione, Timothy A. Thorson, Dennis Michael Turczyn
  • Patent number: 10349178
    Abstract: Embodiments of the present invention relate to microphones diaphragms. In one embodiment, a sensor comprising a diaphragm comprised of a composition having a plurality of individual graphene sheets. An emitter formed in a manner to transmit lights towards a surface of the diaphragm. A collector that captures at least a portion of light that is reflected by the diaphragm. A converter is in communication with the detector that converts a signal that is generated by the sensor to a digital signal for processing. The graphene-based composition includes graphene sheets.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: July 9, 2019
    Assignee: VORBECK MATERIALS, CORP.
    Inventors: John S Lettow, Dan F Scheffer, Kenneth E Fritsch
  • Patent number: 10337105
    Abstract: A valve assembly is provided that comprises a vacuum valve including a body and an electrically grounded surface on at least a surface of the body and an electrode extending substantially parallel to the electrically grounded surface and adjacent to the vacuum valve. The vacuum valve assembly also includes a barrier dielectric, a least a portion of which is located between the electrode and the electrically grounded surface. The vacuum valve assembly further includes a dielectric barrier discharge structure formed from the electrically grounded surface, the electrode, and the barrier dielectric. The dielectric barrier discharge structure is adapted to generate a plasma on the electrically grounded surface to clean at least a portion of the vacuum valve.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: July 2, 2019
    Assignee: MKS Instruments, Inc.
    Inventor: Gordon Hill
  • Patent number: 10312128
    Abstract: Chemical-mechanical polishing (CMP) devices, tools, and methods are disclosed. In some embodiments, a device for a CMP tool includes a carrier and an embedded dummy disk coupled to the carrier. The embedded dummy disk comprises a substrate and a film disposed over the substrate. The carrier is coupleable to an arm of a handler of the CMP tool. The carrier and the embedded dummy disk are adapted to be embedded within a housing of the CMP tool. The embedded dummy disk is adapted to be polished by the CMP tool in preparation for a polishing process for a wafer.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: June 4, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventor: Chang-Sheng Lin
  • Patent number: 10293370
    Abstract: A process and apparatus for producing a gradient nanovoided article, a gradient nanovoided coating, and a gradient low refractive index coating is described. The process includes providing a first solution of a polymerizable material in a solvent, and providing a first environment proximate a first region of the coating and a different second environment proximate an adjacent region of the coating. The process further includes at least partially polymerizing the polymerizable material to form a composition that includes an insoluble polymer matrix and a second solution. The insoluble polymer matrix includes a plurality of nanovoids that are filled with the second solution, and a major portion of the solvent from the second solution is removed. A first volume fraction of the plurality of nanovoids proximate the first region of the coating is less than a second volume fraction of the plurality of nanovoids proximate an adjacent of the coating.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 21, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Adam D. Haag, William F. Edmonds, Jason S. Petaja, Eric W. Nelson, William Blake Kolb, Encai Hao, Fei Lu, Michael Benton Free
  • Patent number: 10232324
    Abstract: Embodiments of gas mixing apparatus are provided herein. In some embodiments, a gas mixing apparatus may include a container defining an interior volume, the container having a closed top and bottom and a sidewall having a circular cross section with respect to a central axis of the container passing through the top and bottom; a plurality of first inlets coupled to the container proximate the top of the container to provide a plurality of process gases to the interior volume of the container, the plurality of first inlets disposed such that a flow path of the plurality of process gases through the plurality of first inlets is substantially tangential to the sidewall of the container; and an outlet coupled to the container proximate the bottom of the container to allow the plurality of process gases to be removed from the interior volume of the container.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: March 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kartik Shah, Kalyanjit Ghosh, Scott McClelland
  • Patent number: 10224182
    Abstract: A system for reducing parasitic plasma in a semiconductor process comprises a first surface and a plurality of dielectric layers that are arranged between an electrode and the first surface. The first surface and the electrode have substantially different electrical potentials. The plurality of dielectric layers defines a first gap between the electrode and one of the plurality of dielectric layers, a second gap between adjacent ones of the plurality of dielectric layers, and a third gap between a last one of the plurality of dielectric layers and the first surface. A number of the plurality of dielectric layers and sizes of the first gap, the second gap and the third gap are selected to prevent parasitic plasma between the first surface and the electrode during the semiconductor process.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: March 5, 2019
    Assignee: NOVELLUS SYSTEMS, INC.
    Inventors: Douglas Keil, Edward Augustyniak, Karl Leeser, Mohamed Sabri
  • Patent number: 10221482
    Abstract: A gas distributor for a CVD reactor includes two separate gas distribution chambers, into each of which a process gas can be fed through an infeed opening. Each of the gas distribution chambers is formed, in part, by a gas distribution device disposed in a top layer being in each case flow-connected to connecting channels disposed in a bottom layer. The connecting channels associated with different gas distribution chambers lie alternately adjacent to one another and have gas outlet openings for the process gases to escape. Each of the at least two gas distribution devices has a distribution section, which in each case is flow-connected to a plurality of sub-distribution sections. The connecting channels are flow-connected to at least one of the sub-distribution sections. The sub-distribution sections of different gas distribution chambers lie alternately adjacent to one another and are separated from one another by a dividing wall.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: March 5, 2019
    Assignee: AIXTRON SE
    Inventors: Thomas Krücken, Baskar Pagadala Gopi, Martin Dauelsberg
  • Patent number: 10220594
    Abstract: Hydrophobic thermal insulation fiberglass flexible blanket using a textile grade fiberglass is produced by impregnating a hydrophobic polymer (e.g. a fluoropolymer) dispersion into a fiberglass blanket/mat, such as a needle felted fiberglass (FG) blanket/mat. The preferred FG needle felt blanket is a mechanically, rather than organically, bound glass fiber insulating blanket. The hydrophobic polymer dispersion forms a hydrophobic coating on the surface of the fiberglass filaments. Integral hydrophobicity is achieved and maintained without the need to add commonly-used hydrophobic inorganic particles, such as treated silica aerogels or fumed silica. Optionally, to enhance overall hydrophobicity and to inhibit fibrous surface lofting, a super-hydrophobic coating of fluoropolymer and inorganic particles such as silica particles may be dispersed onto one or more surfaces of the blanket.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: March 5, 2019
    Inventors: Lewis Dill, Chengjun Zhou
  • Patent number: 10211046
    Abstract: Embodiments of substrate support rings providing more uniform thickness of layers deposited or grown on a substrate are provided herein. In some embodiments, a substrate support ring includes: an inner ring with a centrally located support surface to support a substrate; and an outer ring extending radially outward from the support surface, wherein the outer ring comprises a reaction surface area disposed above and generally parallel to a support plane of the support surface, and wherein the reaction surface extends beyond the support surface by about 24 mm to about 45 mm.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: February 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Heng Pan, Lara Hawrylchak, Christopher S. Olsen
  • Patent number: 10189033
    Abstract: A process and apparatus are disclosed for the deposition of a layer of a first material onto a substrate of a second material. Powder particles of the first material are entrained into a carrier gas flow to form a powder beam directed to impinge on the substrate. This defines a powder beam footprint region at the substrate. The powder beam and the substrate are moved relative to each other to move the powder beam footprint relative to the substrate, thereby to deposit the layer of the first material. A laser is operated to cause direct, local heating of at least one of a forward substrate region and a powder beam footprint region. The laser beam direction is defined with reference to a plane coincident with or tangential to a surface of the substrate at the center of the laser beam footprint in terms of an elevation angle from the plane to the laser beam direction and in terms of an acute azimuthal angle from the movement direction to the laser beam direction.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: January 29, 2019
    Assignee: Laser Fusion Technologies Ltd.
    Inventors: Martin Sparkes, William O'Neill, Andrew Cockburn, Rocco Lupoi, Matthew Bray
  • Patent number: 10167551
    Abstract: The present invention relates to an apparatus, method, a reaction chamber and a use of a reaction chamber for processing a surface of a substrate by subjecting the surface of a substrate to successive surface reactions of at least a first precursor and a second precursor. The apparatus includes a vacuum chamber; a detachable reaction chamber arranged to be installed inside the vacuum chamber, and inside which the substrate is positioned during processing and a precursor system for supplying the at least first and second precursors into the action chamber and for discharging the at least first and second precursors from the reaction chamber. According to the present invention the reaction chamber is provided as a gastight vessel.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: January 1, 2019
    Assignee: BENEQ OY
    Inventors: Mikko Soderlund, Pekka Soininen, Jarmo Maula
  • Patent number: 10163676
    Abstract: A apparatus includes a susceptor and a non-reactive gas source. The susceptor has through holes and a wafer support surface. Each through hole includes a lift pin and a lift pin head. The lift pin has a vertical degree of motion in the through hole to lift up or place a wafer on the susceptor. The lift pin head has at least one flow channel structure running from its first surface at least partially exposed to a bottom side of the susceptor through its second surface exposed to a top side of the susceptor wherein the lift pin. The non-reactive gas source is configured to flow a gas to a backside of the wafer through the flow channel structure through the bottom side of the susceptor.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: December 25, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Yu Chen, Wei-Jen Chen, Yi-Chen Chiang, Tsang-Yang Liu, Chang-Sheng Lee, Wei-Chen Liao, Wei Zhang