Patents Examined by Hal Wachsman
  • Patent number: 8290737
    Abstract: A method of testing an electronics module (11) for an underwater well installation, comprises the steps of: providing a test equipment (7) comprising a processor (8) and a Local Area Network (LAN) switch (9), such that the processor (8) may communicate with the switch (9); providing an electronics module (11) comprising a data acquisition means (12) and a second LAN switch (10), such that the data acquisition means (12) may communicate with the second switch (10); passing test data from the processor (8) to the data acquisition means (12) via the first and second LAN switches (9, 10); and monitoring the response of the electronics module (11) in response to the test data.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: October 16, 2012
    Assignee: Vetco Gray Controls Limited
    Inventor: Julian R. Davis
  • Patent number: 8290728
    Abstract: A method includes generating a first, second and third voltage output from a temperature sensing element of an integrated circuit using a respective, corresponding first, second and third, switched current source, for sequentially switching a respective first, second and third excitation current through the temperature sensing element. The third switched current source generates the corresponding third voltage output as a reference voltage between the first voltage and the second voltage. An error corrected difference is calculated between the first voltage and the second voltage using the reference voltage. In the method, the second excitation current is proportional to the first excitation current by a value n, and the third excitation current is proportional to the first excitation current by the square root of n.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: October 16, 2012
    Assignee: ATI Technologies ULC
    Inventors: Oleg Drapkin, Grigori Temkine, Kristina Au, Filipp Chekmazov, Paul Edelshteyn
  • Patent number: 8285506
    Abstract: An apparatus for generating a measure of fluid. The apparatus comprises a flow meter and a pulser having an identifier and a memory. The pulser is associated with the flow meter for generating pulser data indicative of a volume of fluid delivered through the flow meter. The pulser may alter the pulser data using correction data stored in its memory to generate altered pulser data. The pulser may store at least one of the pulser data and the altered pulser data in the memory. The apparatus further comprises a switch operatively connected to the pulser's memory. The switch is operative to vary the memory of the pulser between a write-protected and a write-enabled mode. Also, the apparatus comprises a controller in communication with the pulser and a serial communication circuit which enables communication between the pulser and the controller. Communication between the controller and the pulser includes the identifier.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: October 9, 2012
    Assignee: Gilbarco Inc.
    Inventors: Christopher Adam Oldham, Christopher Eric Scott, Juergen Voss
  • Patent number: 8285511
    Abstract: A method and an apparatus for estimating temperature are provided for estimating a temperature of a test point in a space with an air conditioner. In the method, a first and a second sensor device are deployed in the space, wherein the second sensor device is deployed at the test point. Then, state parameters and temperature transformation functions are defined according to temperatures detected by the first and the second sensor devices and a state of the air conditioner during a predetermined time period. After the second sensor device is removed, a current state of the air conditioner is determined by reference temperatures detected by the first sensor device and the state parameters. One of the temperature transformation functions is selected according to the current state, and a current temperature of the test point is estimated by using the selected temperature transformation function and the reference temperatures.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: October 9, 2012
    Assignee: Institute for Information Industry
    Inventors: Kun-Cheng Tsai, Chang-An Hsieh, Pei-Lin Hou, Chia-Shin Yen
  • Patent number: 8280638
    Abstract: A multi-station gravity and magnetic survey is carried out in a borehole. The data from the survey are processed to estimate the inclination and azimuth of the borehole. The drill collar relative permeability is estimated, and the estimated drill collar permeability is then used to remove the effects of induced magnetization of the drill collar on the magnetic measurements.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: October 2, 2012
    Assignee: Baker Hughes Incorporated
    Inventor: Andrew G. Brooks
  • Patent number: 8271225
    Abstract: A test system includes a main selector, a first and a second switching connectors, a first and a second sub-selectors, and a processor. The main selector includes a number of first switches, a number of first contacts, and a number of second contacts. Each sub-selector includes a second switch, a third contact, and a fourth contact. The processor sends a first instruction and a second instruction to correspondingly control the main selector and a selected sub-selector.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: September 18, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Yung-Cheng Hung, Wang-Ding Su, Jui-Hsiung Ho
  • Patent number: 8265881
    Abstract: A temperature of a gas sensor may be adjusted to a first temperature value for a first period of time and a second temperature value for a second period of time. A signal of the gas sensor may be measured during the first period of time to determine a first signal value and during the second period of time to determine a second value. Then, concentration information for at least one gas is calculated according to the first signal value and the second signal value. While the gas sensor signal may include information about a presence of a first gas and a second gas, the concentration information for the at least one gas may not substantially include concentration information for the second gas.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: September 11, 2012
    Assignee: H2Scan Corporation
    Inventors: Vikas Lakhotia, G. Jordan Maclay
  • Patent number: 8265885
    Abstract: A method for monitoring stress on a wind turbine blade during loading is disclosed. The method includes capturing multiple images at respective locations of the blade. The method also includes measuring temperature at the respective locations based upon captured images. The method further includes calculating stress applied on the blade at the respective locations based upon the measured temperature. The method also includes calculating stress applied on the blade at the respective locations based upon the measured temperature. The method further includes comparing the calculated stress with respective theoretical stress in a finite element model to predict lifetime of the blade. The method also includes alerting an operator in event that the calculated stress at one or more of the respective locations is above a pre-determined limit.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: September 11, 2012
    Assignee: General Electric Company
    Inventor: Sheri George
  • Patent number: 8255171
    Abstract: A method for determining when a ceramic component on a platform should be replaced. The method includes determining parameters for the ceramic component, the parameters include empirically determined a critical stress intensity factor, and a geometry factor for the ceramic component. The method also includes determining a relationship between platform operational parameters to the generation of stress at the surface of interest of the ceramic component, determining an initial crack size of a crack within the ceramic component at installation, tracking operational parameters of the platform throughout a course of usage of the ceramic component, calculating the corresponding stress at the crack location due to the tracked operational parameters, and calculating a numerical solution that illustrates a crack growth rate velocity and tracks a size of the crack over time. The ceramic component is replaced based on the crack growth rate velocity and the size of the crack.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: August 28, 2012
    Assignee: The Boeing Company
    Inventor: Chester Lee Balestra
  • Patent number: 8249817
    Abstract: A chromatograph analyzing device for automatically executing a base line setting process on an unseparated peak using preset base line conditions. The chromatograph analyzing device includes a separation unit for separating a component included in a sample, and a data processing device for identifying the component of the sample and the quantity of the component in the sample by using a chromatogram obtained from the separation.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: August 21, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Osamu Watabe, Masahito Ito
  • Patent number: 8249821
    Abstract: A testing method for a fan module is provided. When the fan module is tested, a testing computer sends a testing command to a testing device first. Then, the testing device responds to the testing command and controls the fan module to work in a plurality of rotational speed modes in sequence. The testing device reads an actual rotational speed when the fan module works in one of the rotational speed modes and sends the actual rotational speed back to the testing computer. The testing computer compares the actual rotational speed with a corresponding reference rotational speed value stored in the testing computer, and determines the testing result. Finally, the testing result is shown.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 21, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Shu-Hsien Chou, Li-Wen Guo, Bi-Hui Tan, Kang-Bin Wang
  • Patent number: 8244492
    Abstract: Delay-fault testing and parametric analysis systems and methods utilizing one or more variable delay time-base generators. In embodiments of the delay-fault testing systems, short-delay logic paths are provided with additional scan-chain memory elements and logic that, in conjunction with the one or more variable-delay time-base generators, provides the effect of over-clocking without the need to over-clock. Related methods provide such effective over-clocking. In embodiments of parametric analysis systems, test point sampling elements and analysis circuitry are clocked as a function of the output of the one or more variable-delay time-base generators to provide various parametric analysis functionality. Related methods address this functionality.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: August 14, 2012
    Assignee: DFT Microsystems, Inc.
    Inventor: Mohamed M. Hafed
  • Patent number: 8244472
    Abstract: A system and method enable testing of a plurality of well-logging tools on a common, realistic earth model. To enable this testing, a model of a synthetic virtual geologic volume of interest is generated. From the synthetic virtual geologic volume of interest, a plurality of test properties are determined as a function of position within the virtual geologic volume of interest, wherein the test properties are measurable in actual geologic volumes of interest by a well-logging instruments. The individual test properties are then distributed to well-logging instrument developers with the model of the synthetic virtual geologic volume of interest to enable modeling and/or benchmarking of different well-logging instruments on the synthetic virtual geologic volume of interest and the ability to derive the original formation properties regardless of the method used (inversion, analytical solution, etc.).
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: August 14, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventor: Jean-Baptiste Clavaud
  • Patent number: 8239148
    Abstract: A state switching device for switching the states of a device by detecting a battery voltage of the device is provided. The device includes a voltage dividing circuit to provide an output voltage in proportion to the battery voltage, and a detection unit which includes a voltage detection module, a comparison module, a control module and a state detection module to obtain the device's state. The voltage detection module produces a digital detection voltage according to the output voltage at normal time intervals, the comparison module detects whether the digital detection voltage is lower than a reference voltage corresponding to the state. If yes, the voltage detection module obtains digital detection voltage at abnormal time intervals. The comparison module compares a predetermined number of digital detection voltages with the reference voltage to produce comparison results. The control module determines whether to maintain the device's state according to the comparison results.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: August 7, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Shih-Fang Wong, Tsung-Jen Chuang, Lin-Kun Ding, Jiang-Feng Shan
  • Patent number: 8234093
    Abstract: The computation of a Load Factor, a Life Factor or a Load Enhancement Factor using Modified Joint Weibull Analysis may include retrieving a test data set from at least one database and analyzing the data retrieved for fit with a Weibull distribution model. The test data may be analyzed to determine if at least two coupons have been tested and if applied loads and duration of testing at a component-level were varied. A shape parameter may be calculated for the Weibull distribution model. A scale parameter may be calculated for the Weibull distribution of the data. A stress to life cycle relationship may be calculated to account for scatter in the data through the Weibull distribution data. The Life Factor, the Load Factor or the Load Enhancement Factor may be calculated based on the stress to life cycle relationship to account for scatter.
    Type: Grant
    Filed: December 12, 2010
    Date of Patent: July 31, 2012
    Assignee: The Boeing Company
    Inventors: James W. Giancaspro, Winson Taam
  • Patent number: 8234081
    Abstract: A system measures the strain of an object. The system includes a laser source for generating an output radiation, a strainable optical fiber having first and second facets, and means for calculating a measure of a strain of the optical fiber. The first facet is coupled to the laser source to receive the output radiation and transmit a guided radiation over the optical fiber towards the second facet. The second facet is adapted to receive the guided radiation and to reflect a corresponding reflected radiation towards the first facet. The laser source is a self-mixing type adapted to receive at least part of the reflected radiation and to mix the output radiation with the received radiation. The calculating means calculate the measure of the strain of the optical fiber based on a self-mixing effect in the laser source that is caused by the linear displacement of the second section.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: July 31, 2012
    Assignee: Universita degli Studi di Bari
    Inventors: Maurizio Dabbicco, Gaetano Scamarcio, Simona Ottonelli, Angela Intermite, Branimir Radisavljevic
  • Patent number: 8234084
    Abstract: A system includes a probe configured to be raised and lowered in a tank that is configured to receive a material. The system also includes a connector coupled to the probe and having at least one type of coding encoded on the connector. The system further includes a main unit configured to raise and lower the probe using the connector, digitally capture information associated with the at least one type of coding on the connector, determine a level reading identifying a level of the material in the tank using the captured information, and wirelessly transmit the determined level reading.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: July 31, 2012
    Assignee: Enraf B.V.
    Inventors: Fernand Wicht, Bin Sai
  • Patent number: 8229707
    Abstract: A method of extracting and analyzing a data set from a flow cytometer system of the preferred embodiment comprises the steps of (1) running a sample and saving all collected raw data, (2) viewing raw (or “unmodified”) data, (3) modifying the raw data (e.g., scaling and/or culling the raw data), (4) reviewing and saving the modified data, and (5) exporting the saved data. Once the sample has been run and all collected data have been saved, the user can repeat the steps of modifying the raw data, saving the modified data, and exporting the saved data as many times as necessary and/or desirable.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: July 24, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventors: David Olson, Collin A. Rich, Clement James Goebel, III
  • Patent number: 8229684
    Abstract: The detection system of the first preferred embodiment includes a detector, having a wide dynamic range, that receives photonic inputs from an interrogation zone and produces an analog signal; and an analog-to-digital converter (ADC), having a high bit resolution, that is coupled to the detector and converts an analog signal to a digital signal. The digital signal includes an initial data set of the full dynamic range of the input signals from the flow cytometer sample. The method of extracting and analyzing data from a flow cytometer system of the first preferred embodiment preferably includes the steps of: collecting a full dynamic range of input signals from a flow cytometer sample; recognizing and annotating aggregate particle events; and storing an initial data set and an annotated data set of the full dynamic range of the input signals from the flow cytometer sample.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: July 24, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventors: Clement James Goebel, Collin A. Rich
  • Patent number: RE43598
    Abstract: A system and method for configuring an integrated information system through a common user interface are provided. A user accesses a graphical user interface and selects client, premises, location, monitoring device, and processing rule information. The graphical user interface transmits the user selection to a processing server, which configures one or more monitoring devices according to the user selections.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: August 21, 2012
    Assignee: VIG Acquisitions Ltd., L.L.C.
    Inventors: Bruce Alexander, Karen Grose, Christoph Schebel, David Antal