Patents Examined by Han Yang
  • Patent number: 11527278
    Abstract: A high-density low voltage ferroelectric (or paraelectric) memory bit-cell that includes a planar ferroelectric or paraelectric capacitor. The memory bit-cell comprises 1T1C configuration, where a plate-line is parallel to a word-line, or the plate-line is parallel to a bit-line. The memory bit-cell can be 1TnC, where ‘n’ is a number. In a 1TnC bit-cell, the capacitors are vertically stacked allowing for multiple values to be stored in a single bit-cell. The memory bit-cell can be multi-element FE gain bit-cell. In a multi-element FE gain bit-cell, data sensing is done with signal amplified by a gain transistor in the bit-cell. As such, higher storage density is realized using multi-element FE gain bit-cells. In some examples, the 1T1C, 1TnC, and multi-element FE gain bit-cells are multi-level bit-cells. To realize multi-level bit-cells, the capacitor is placed in a partially switched polarization state by applying different voltage levels or different time pulse widths at the same voltage level.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: December 13, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Pratyush Pandey, Debo Olaosebikan, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11527277
    Abstract: A high-density low voltage ferroelectric (or paraelectric) memory bit-cell that includes a planar ferroelectric or paraelectric capacitor. The memory bit-cell comprises 1T1C configuration, where a plate-line is parallel to a word-line, or the plate-line is parallel to a bit-line. The memory bit-cell can be 1TnC, where ‘n’ is a number. In a 1TnC bit-cell, the capacitors are vertically stacked allowing for multiple values to be stored in a single bit-cell. The memory bit-cell can be multi-element FE gain bit-cell. In a multi-element FE gain bit-cell, data sensing is done with signal amplified by a gain transistor in the bit-cell. As such, higher storage density is realized using multi-element FE gain bit-cells. In some examples, the 1T1C, 1TnC, and multi-element FE gain bit-cells are multi-level bit-cells. To realize multi-level bit-cells, the capacitor is placed in a partially switched polarization state by applying different voltage levels or different time pulse widths at the same voltage level.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: December 13, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Pratyush Pandey, Debo Olaosebikan, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11521667
    Abstract: A high-density low voltage ferroelectric (or paraelectric) memory bit-cell that includes a planar ferroelectric or paraelectric capacitor. The memory bit-cell comprises 1T1C configuration, where a plate-line is parallel to a word-line, or the plate-line is parallel to a bit-line. The memory bit-cell can be 1TnC, where ‘n’ is a number. In a 1TnC bit-cell, the capacitors are vertically stacked allowing for multiple values to be stored in a single bit-cell. The memory bit-cell can be multi-element FE gain bit-cell. In a multi-element FE gain bit-cell, data sensing is done with signal amplified by a gain transistor in the bit-cell. As such, higher storage density is realized using multi-element FE gain bit-cells. In some examples, the 1T1C, 1TnC, and multi-element FE gain bit-cells are multi-level bit-cells. To realize multi-level bit-cells, the capacitor is placed in a partially switched polarization state by applying different voltage levels or different time pulse widths at the same voltage level.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: December 6, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Pratyush Pandey, Debo Olaosebikan, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11521703
    Abstract: Various implementations described herein are related to a method for identifying multi-bank memory architecture having multiple banks including a first bank and a second bank. The method may receive a faulty row address having a faulty bank selection bit, and also, the method may select the first bank or the second bank for row redundancy operations based on the faulty bank selection bit.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: December 6, 2022
    Assignee: Arm Limited
    Inventors: Amandeep Kaur, Andy Wangkun Chen, Penaka Phani Goberu, Khushal Gelda
  • Patent number: 11521666
    Abstract: A high-density low voltage ferroelectric (or paraelectric) memory bit-cell that includes a planar ferroelectric or paraelectric capacitor. The memory bit-cell comprises 1T1C configuration, where a plate-line is parallel to a word-line, or the plate-line is parallel to a bit-line. The memory bit-cell can be 1TnC, where ‘n’ is a number. In a 1TnC bit-cell, the capacitors are vertically stacked allowing for multiple values to be stored in a single bit-cell. The memory bit-cell can be multi-element FE gain bit-cell. In a multi-element FE gain bit-cell, data sensing is done with signal amplified by a gain transistor in the bit-cell. As such, higher storage density is realized using multi-element FE gain bit-cells. In some examples, the 1T1C, 1TnC, and multi-element FE gain bit-cells are multi-level bit-cells. To realize multi-level bit-cells, the capacitor is placed in a partially switched polarization state by applying different voltage levels or different time pulse widths at the same voltage level.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: December 6, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Pratyush Pandey, Debo Olaosebikan, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11520933
    Abstract: A memory chip comprises a first memory controller, a first data storage zone, a security unit and an address configuration unit. The first data storage zone is coupled to the first memory controller, and represented by a first physical address range. The security unit is coupled to the first memory controller. The address configuration unit is coupled to the first memory controller. The memory chip is configured to be coupled between a host controller and another memory chip. The another memory chip comprises a second data storage zone represented by a second physical address range. The address configuration unit records one or more relationships of a logical address range corresponding to the first physical address range and the second physical address range. The security unit is configured to encrypt and decrypt data in the first data storage zone and the second data storage zone.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: December 6, 2022
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Kuen-Long Chang, Chia-Jung Chen, Chin-Hung Chang, Ken-Hui Chen
  • Patent number: 11520529
    Abstract: Methods, systems, and devices related to signal development caching in a memory device are described. In one example, a memory device in accordance with the described techniques may include a memory array, a sense amplifier array, and a signal development cache configured to store signals (e.g., cache signals, signal states) associated with logic states (e.g., memory states) that may be stored at the memory array (e.g., according to various read or write operations). In various examples, accessing the memory device may include accessing information from the signal development cache, or the memory array, or both, based on various mappings or operations of the memory device.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: December 6, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Dmitri A. Yudanov, Shanky Kumar Jain
  • Patent number: 11521690
    Abstract: Disclosed in some examples are improvements to data placement architectures in NAND that provide additional data protection through an improved NAND data placement schema that allows for recovery from certain failure scenarios. The present disclosure stripes data diagonally across page lines and planes to enhance the data protection. Parity bits are stored in SLC blocks for extra protection until the block is finished writing and then the parity bits may be deleted.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: December 6, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Carminantonio Manganelli, Paolo Papa, Massimo Iaculo, Giuseppe D'Eliseo, Alberto Sassara
  • Patent number: 11514966
    Abstract: A high-density low voltage ferroelectric (or paraelectric) memory bit-cell that includes a planar ferroelectric or paraelectric capacitor. The memory bit-cell comprises 1T1C configuration, where a plate-line is parallel to a word-line, or the plate-line is parallel to a bit-line. The memory bit-cell can be 1TnC, where ‘n’ is a number. In a 1TnC bit-cell, the capacitors are vertically stacked allowing for multiple values to be stored in a single bit-cell. The memory bit-cell can be multi-element FE gain bit-cell. In a multi-element FE gain bit-cell, data sensing is done with signal amplified by a gain transistor in the bit-cell. As such, higher storage density is realized using multi-element FE gain bit-cells. In some examples, the 1T1C, 1TnC, and multi-element FE gain bit-cells are multi-level bit-cells. To realize multi-level bit-cells, the capacitor is placed in a partially switched polarization state by applying different voltage levels or different time pulse widths at the same voltage level.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: November 29, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Pratyush Pandey, Debo Olaosebikan, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11514998
    Abstract: An electronic device includes a core circuit configured to store write data and a write parity after outputting read data and a read parity in a data masking operation. The electronic device also includes an error correction circuit configured to correct an error included in the read data, based on the read parity; generate the write parity from the error-corrected read data, input data, and masking data; and generate the write data from the error-uncorrected read data, the input data, and the masking data.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: November 29, 2022
    Assignee: SK hynix Inc.
    Inventors: Dae Suk Kim, Hoi Ju Chung, Dong Kyun Kim, Jeong Jun Lee
  • Patent number: 11514968
    Abstract: Methods, systems, and devices for charge leakage detection for memory system reliability are described. In accordance with examples as disclosed herein, a memory system may employ memory management techniques configured to identify precursors of charge leakage in a memory device, and take preventative action based on such identified precursors. For example, a memory system may be configured to perform a leakage detection evaluation for a memory array, which may include various biasing and evaluation operations to identify whether a leakage condition of the memory array may affect operational reliability. Based on such an evaluation, the memory device, or a host device in communication with the memory device, may take various preventative measures to avoid operational failures of the memory device or host device that may result from ongoing operation of a memory array associated with charge leakage, thereby improving reliability of the memory system.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: November 29, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Angelo Visconti, Riccardo Pazzocco, Jonathan J. Strand, Kevin T. Majerus
  • Patent number: 11514967
    Abstract: A high-density low voltage ferroelectric (or paraelectric) memory bit-cell that includes a planar ferroelectric or paraelectric capacitor. The memory bit-cell comprises 1T1C configuration, where a plate-line is parallel to a word-line, or the plate-line is parallel to a bit-line. The memory bit-cell can be 1TnC, where ‘n’ is a number. In a 1TnC bit-cell, the capacitors are vertically stacked allowing for multiple values to be stored in a single bit-cell. The memory bit-cell can be multi-element FE gain bit-cell. In a multi-element FE gain bit-cell, data sensing is done with signal amplified by a gain transistor in the bit-cell. As such, higher storage density is realized using multi-element FE gain bit-cells. In some examples, the 1T1C, 1TnC, and multi-element FE gain bit-cells are multi-level bit-cells. To realize multi-level bit-cells, the capacitor is placed in a partially switched polarization state by applying different voltage levels or different time pulse widths at the same voltage level.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: November 29, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Pratyush Pandey, Debo Olaosebikan, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11508428
    Abstract: An electronic circuit may be operated based on two or more supply voltages ramped in accordance with a digital control scheme, the digital control scheme may include ramping a voltage value of a first output voltage generated via a first digitally controlled voltage converter from a first target voltage value to a third target voltage value such that the voltage value of the first output voltage matches a second target voltage value during a first ramp interval and the third target voltage value during a second ramp interval; and ramping a voltage value of a second output voltage generated via a second digitally controlled voltage converter from the first target voltage value to the second target voltage value such that the voltage value of the second output voltage matches the second target voltage value during the first ramp interval, and the second target voltage value during the second ramp interval.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: November 22, 2022
    Assignee: Ferroelectric Memory GmbH
    Inventors: Marko Noack, Rashid Iqbal
  • Patent number: 11501813
    Abstract: A high-density low voltage ferroelectric (or paraelectric) memory bit-cell that includes a planar ferroelectric or paraelectric capacitor. The memory bit-cell comprises 1T1C configuration, where a plate-line is parallel to a word-line, or the plate-line is parallel to a bit-line. The memory bit-cell can be 1TnC, where ‘n’ is a number. In a 1TnC bit-cell, the capacitors are vertically stacked allowing for multiple values to be stored in a single bit-cell. The memory bit-cell can be multi-element FE gain bit-cell. In a multi-element FE gain bit-cell, data sensing is done with signal amplified by a gain transistor in the bit-cell. As such, higher storage density is realized using multi-element FE gain bit-cells. In some examples, the 1T1C, 1TnC, and multi-element FE gain bit-cells are multi-level bit-cells. To realize multi-level bit-cells, the capacitor is placed in a partially switched polarization state by applying different voltage levels or different time pulse widths at the same voltage level.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: November 15, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Pratyush Pandey, Debo Olaosebikan, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11501815
    Abstract: Methods, systems, and devices for sensing a memory with shared sense components are described. A device may activate a word line and a plate line each coupled with a set of memory cells, where each memory cell of the set of memory cells is coupled with a respective digit line of a set of digit lines. The device may activate a set of switching components to couple each digit line of the set of digit lines with a respective sense component of a set of sense components, where each switching component of the set of switching components is coupled with a respective memory cell of the set of memory cells. The device may sense the set of memory cells based on activating the word line and the plate line and based on coupling the set of digit lines with the set of sense components.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: November 15, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Yuan He, Tae H. Kim, Scott James Derner
  • Patent number: 11494476
    Abstract: Example systems and methods for biometric authentication that can bridge fuzzy extractors with deep learning and achieve the goals of preserving privacy and providing recoverability from zero are disclosed. Embeddings comprising a face or speaker embedding in a non-Hamming distance space can be processed to create a personal reliable bit map and a reliable locality-sensitive hash (LSH) for mapping the non-Hamming distance space to a Hamming distance space. A fuzzy extractor can be applied to create metadata that can be stored on a computing device. A secret can be recovered from the metadata and can be used for identification.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: November 8, 2022
    Assignee: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Pak Ho Chung, Wenke Lee, Erkam Uzun, Carter Yagemann
  • Patent number: 11496470
    Abstract: A method, device and non-transitory computer readable medium for randomized multi-factor authentication with biometrics includes randomly selecting one of a plurality of biometrics in response to a request from a client device. At least the randomly selected biometric is requested from the requesting client device. A match of the requested randomly selected biometric received from the requesting client device against stored biometric information above a set threshold is verified. Access for the request is granted when the verification indicates the match.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: November 8, 2022
    Assignee: JPMORGAN CHASE BANK, N.A.
    Inventors: Nitin Bhargava, Troy Braban
  • Patent number: 11482292
    Abstract: A non-volatile storage system includes a control circuit connected to non-volatile memory cells provides for progressive writing of data. That is, existing data is overwritten by new data without performing a traditional erase operation that changes the threshold voltage of the memory cells back to the traditional or original erase state. In one example, new data is written on top of old data using shifted threshold voltage distributions. Some embodiments include writing MLC data over SLC data, using intermediate erase threshold voltage distributions and/or automatically detecting which threshold voltage distributions are currently being used to store data.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: October 25, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Daniel Linnen, Kirubakaran Periyannan, Khanfer Kukkady, Preston Thomson
  • Patent number: 11482540
    Abstract: A 3D memory device, the device comprising: a plurality of memory cells, wherein each memory cell of said plurality of memory cells comprises at least one memory transistor, wherein each of said at least one memory transistor comprises a source, a drain, and a channel; a plurality of bit-line pillars, wherein each bit-line pillar of said plurality of bit-line pillars is directly connected to a plurality of said source or said drain, wherein said bit-line pillars are vertically oriented, wherein said channel is horizontally oriented, wherein said plurality of memory cells comprise a partially or fully metalized source, and/or, a partially or fully metalized drain, and wherein said plurality of bit-line pillars comprise a thermally conductive path from said plurality of memory cells to an external surface of said device.
    Type: Grant
    Filed: February 26, 2022
    Date of Patent: October 25, 2022
    Assignee: MONOLITHIC 3D INC.
    Inventors: Zvi Or-Bach, Jin-Woo Han, Eli Lusky
  • Patent number: 11475972
    Abstract: A controller includes control pins, a buffer memory, an error correction circuit, and a processor driving a read level search unit for a read operation of at least one non-volatile memory device, in which the read level search unit receives fail bit information of a sector error-corrected in the first page from the at least one non-volatile memory device when the error correction of the first read data is not possible, and searches for an optimal read level or set a soft decision offset using the fail bit information.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: October 18, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Younghwi Yang, Ilhan Park, Jinyoung Kim, Sehwan Park, Dongmin Shin