Patents Examined by Helen C. Kwok
  • Patent number: 11531041
    Abstract: A sensor system including a plurality of individual and separate sensor elements. Each of the individual sensor elements is independently functional. The individual sensor elements of the sensor system being formed in one piece from parts of a wafer or a vertically integrated wafer stack. The sensor system including at least one separation structure, in particular a scribe line, between the individual and separate sensor elements.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: December 20, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Amin Jemili, Joerg Braeuer, Johannes Classen
  • Patent number: 11525811
    Abstract: A sound source device and a signal receiver are disposed at first and second ports of a target object, respectively. A sound of a specific frequency of the sound source device is introduced into the target object to generate a resonant sound wave. A computer simulates a signal generated when the resonant sound wave is received by the signal receiver and regarding the signal as reference information. The reference information comprises first data having characteristics of the resonant sound wave, and data having features of an imaginary defect formed on the target object. The features of the imaginary defect correspond to the characteristics of the resonant sound wave. When the target object has a real defect, the sound of the specific frequency of the sound source device is introduced into the target object. Features of the real defect are derived by comparing the first data with the second data.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: December 13, 2022
    Assignee: Industrial Technology Research Institute
    Inventors: Yao-Long Tsai, Tai-Ping Tsai, Li-Hua Wang, Yi-Tsung Pan
  • Patent number: 11519932
    Abstract: A MEMS inertial sensor includes a supporting structure and an inertial structure. The inertial structure includes at least one inertial mass, an elastic structure, and a stopper structure. The elastic structure is mechanically coupled to the inertial mass and to the supporting structure so as to enable a movement of the inertial mass along a first direction, when the supporting structure is subjected to an acceleration parallel to the first direction. The stopper structure is fixed with respect to the supporting structure and includes at least one primary and one secondary stopper elements. If the acceleration exceeds a first threshold value, the inertial mass abuts against the primary stopper element and subsequently rotates about an axis of rotation defined by the primary stopper element. If the acceleration exceeds a second threshold value, rotation of the inertial mass terminates when the inertial mass abuts against the secondary stopper element.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: December 6, 2022
    Assignee: STMicroelectronics S.r.l.
    Inventors: Francesco Rizzini, Gabriele Gattere, Sarah Zerbini
  • Patent number: 11512958
    Abstract: An angular rate sensor includes an annular resonator. The resonator includes an annular base material made of a first material, and an annular first low thermal conductor made of a second material having a lower thermal conductivity than the first material, the first low thermal conductor being sandwiched between an annular first region and an annular second region on an inner side of the first region in the base material over substantially an entire circumference of the resonator.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: November 29, 2022
    Assignee: Sumitomo Precision Products Co., Ltd.
    Inventors: Ryohei Uchino, Takashi Ikeda
  • Patent number: 11513000
    Abstract: Provided are a waveform analysis method and a waveform analysis device capable of preventing, in advance, a breakage accident during operation and preventing stoppage due to breakdown of machinery and performing efficient maintenance work by specifying a degraded part from among the parts that constitute the machinery.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: November 29, 2022
    Inventor: Daigo Tamatsukuri
  • Patent number: 11506682
    Abstract: A processing device (120) of a tire state detection system (100) is provided with an acceleration data acquisition unit (123) for acquiring the acceleration data detected by an acceleration sensor (111) at every predetermined acquisition interval, an acceleration data extraction unit (125) for extracting the maximum acceleration data indicating at least the maximum acceleration and the intermediate acceleration data indicating the intermediate acceleration excluding the minimum acceleration data indicating the minimum acceleration from 3 or more acceleration data acquired sequentially, and a calculation unit (127) for executing an calculation using the extracted intermediate acceleration data.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: November 22, 2022
    Assignee: BRIDGESTONE CORPORATION
    Inventor: Kyohei Honda
  • Patent number: 11499987
    Abstract: A sensor includes a movable element adapted for rotational motion about a rotational axis due to acceleration along an axis perpendicular to a surface of a substrate. The movable element includes first and second ends, a first section having a first length between the rotational axis and the first end, and a second section having a second length between the rotational axis and the second end that is less than the first length. A motion stop extends from the second end of the second section. The first end of the first section includes a geometric stop region for contacting the surface of the substrate at a first distance away from the rotational axis. The motion stop for contacting the surface of the substrate at a second distance away from the rotational axis. The first and second distances facilitate symmetric stop performance between the geometric stop region and the motion stop.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: November 15, 2022
    Assignee: NXP USA, Inc.
    Inventors: Andrew C McNeil, Fengyuan Li
  • Patent number: 11493531
    Abstract: This disclosure describes techniques of configuring capacitive comb fingers of an accelerometer resonator into discreet electrodes with drive electrodes and at least two sense electrodes. The routing of electrical signals is configured to produce parasitic feedthrough capacitances that are approximately equal. The sense electrodes may be placed on opposite sides of the moving resonator beams such that the changes in capacitance with respect to displacement (e.g. dC/dx) are approximately equal in magnitude and opposite in sign. The arrangement may result in sense currents that are also opposite in sign and result in feedthrough currents of the same sign. The sense outputs from the resonators may be connected to a differential amplifier, such that the difference in output currents may mitigate the effect of the feedthrough currents and cancel parasitic feedthrough capacitance. Parasitic feedthrough capacitance may cause increased accelerometer noise and reduced bias stability.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: November 8, 2022
    Assignee: Honeywell International Inc.
    Inventor: John Reinke
  • Patent number: 11473909
    Abstract: A MEMS system includes a gyroscope that generates a quadrature signal and an angular velocity signal. The MEMS system further includes an accelerometer that generates a linear acceleration signal. The quadrature signal and the linear acceleration signal are received by a processing circuitry that modifies the linear acceleration signal based on the quadrature signal to determine linear acceleration.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: October 18, 2022
    Assignee: INVENSENSE, INC.
    Inventors: Pietro Scafidi, Kevin Hughes, Daniele Ghezzi
  • Patent number: 11474126
    Abstract: A high precision rotation sensor comprises an inertial mass suspended from a base wherein the mass is responsive to rotational inputs that apply loads to load-sensitive resonators whose changes in resonant frequency are related to the applied loads.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: October 18, 2022
    Assignee: QUARTZ SEISMIC SENSORS, INC.
    Inventors: Jerome M. Paros, Krishna Venkateswara
  • Patent number: 11467181
    Abstract: The present invention provides a high-accuracy low-noise MEMS accelerometer by using at least two symmetric out-of-plane proof masses for both out-of-plane and in-plane axes. Movement of the proof masses in one or more in-plane sense axes is measured by comb capacitors with mirrored comb electrodes that minimise cross-axis error from in-plane movement of the proof mass out of the sense axis of the capacitor. The two out-of-plane proof masses rotate in opposite directions, thus maintaining their combined centre of mass at the centre of the accelerometer even as they rotate out of plane.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: October 11, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Matti Liukku, Ville-Pekka Rytkönen, Anssi Blomqvist
  • Patent number: 11466985
    Abstract: A rotation-rate sensor having a substrate, the substrate having a main-extension-plane, and the rotation-rate sensor includes at least one first and one second mass-element which are oscillate-able, and a first main-extension-direction of the substrate points from the first mass-element to the second mass-element, and a coupling-structure is situated in the first main-extension-direction between the first and second mass-element, in which a first coupling-region of the coupling-structure is situated in a first function-layer, and a first mass-region of the first mass-element is situated in the first function-layer and a second mass-region of the first mass-element is situated in a second function-layer, the first function-layer being situated in an extension-direction perpendicular to the main-extension-plane between the substrate and the second function-layer, a second main-extension-direction being situated perpendicular to the first main-extension-direction, and the first coupling-region having a greater e
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 11, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Jan-Timo Liewald, Andreas Lassl, Burkhard Kuhlmann, Matthias Kuehnel, Niels Bode, Nils Felix Kuhlmann, Odd-Axel Pruetz, Peter Degenfeld-Schonburg, Reinhard Neul
  • Patent number: 11467132
    Abstract: Non-limiting examples of the present disclosure relate to devices, systems and methods of manufacture for an exemplary waveguide usable for acoustic signal transmission for non-destructive evaluation (NDE) of a wooden specimen. An exemplary waveguide comprises a mating portion for interfacing with a transducer horn of an ultrasonic transducer. The mating portion comprises an impact surface and a contact well that is fabricated within the impact surface so that the contact well is not contacted during an impact that drives the waveguide into wood. The contact well is utilized to connect the waveguide to a transducer horn. The waveguide further comprises a body portion that comprises a radiating component optimized for non-destructive evaluation (NDE) of wood and transmission of ultrasonic signal data.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: October 11, 2022
    Assignee: VOLT HOLDINGS LIMITED
    Inventors: Yishi Lee, Wayne Hall
  • Patent number: 11467615
    Abstract: The invention relates to an electronic device for measuring a specific quantity, the device having a two-wire interface having two connection terminals intended to be connected to a conductive pair supplying the measuring device and conveying in return an electrical quantity representative of the measured quantity. The device comprises a transducer providing a raw measurement of the determined quantity, a processing stage for conditioning the raw measurement, the processing stage including one input connected to the transducer and one output, a regulator electrically connected to the processing stage. The regulator includes an input port electrically connected to the two connection terminals of the two-wire interface and an output port supplying regulated voltage to the transducer and/or to the processing stage. The device also includes a feedback circuit electrically connected to the regulator input port and to the processing stage.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 11, 2022
    Inventor: Frédéric Bartoli
  • Patent number: 11460482
    Abstract: According to one embodiment, a sensor includes a base body, a first movable structure body, and a first fixed structure body. The first movable structure body includes first movable electrodes. A direction from the base body toward the first movable electrodes is aligned with a first direction. A distance between the base body and the plurality of first movable electrodes is changeable. A direction from one of the first movable electrodes toward an other one of the first movable electrodes is aligned with a second direction crossing the first direction. The first fixed structure body includes first fixed electrodes. One of the first fixed electrodes is between the one of the first movable electrodes and the other one of the first movable electrodes. A first movable electrode length along the first direction is shorter than a first fixed electrode length along the first direction.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: October 4, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira Fujimoto, Hideyuki Tomizawa, Akiko Yuzawa, Naofumi Nakamura
  • Patent number: 11459228
    Abstract: A physical quantity sensor includes a substrate, a movable body that is provided displaceably in a state of being opposed to the substrate and is provided with a first through-hole and a second through-hole as through-holes, and a protrusion configured integrally with the substrate at a side of the movable body of the substrate, and in which the protrusion is provided at a position where the protrusion overlaps the through-hole and the movable body in plan view.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: October 4, 2022
    Assignee: Seiko Epson Corporation
    Inventor: Satoru Tanaka
  • Patent number: 11460483
    Abstract: An inertial sensor includes a substrate, a movable element that swings around a swing axis; and a protrusion that overlaps with the movable element in the plan view and protrudes from the substrate toward the movable element. The protrusion includes a first protrusion and a second protrusion so located as to be farther from the swing axis than the first protrusion, and when the movable element swings relative to the substrate around the swing axis, the first protrusion and the second protrusion come into contact with the movable element at the same time or the first protrusion comes into contact with the movable element and then the second protrusion comes into contact with the movable element.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: October 4, 2022
    Inventor: Satoru Tanaka
  • Patent number: 11460449
    Abstract: An escape system used for a car being sunken into water and its ultrasonic component are illustrated. The ultrasonic component has a case and an ultrasonic module, and the escape system used for the car being sunken into water has the ultrasonic component and a mainboard. The present disclosure utilizes the property of the ultrasonic to recognize the type and thickness of obstacles which are accumulated in the ultrasonic component, and to determine whether a warning message for sweeping the obstacles should be sent, so as to maintain a sensitivity of the ultrasonic component and further to prevent the ultrasonic component from mistakenly judging that the car is sunken in water.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: October 4, 2022
    Inventor: Jr-Hui Hsieh
  • Patent number: 11454614
    Abstract: The present disclosure illustrates an escape system for a sunken car and an ultrasonic component. The ultrasonic component has a case and an ultrasonic module, and the escape system for a sunken car has at least the ultrasonic component and a main board. The escape system for the sunken car and the ultrasonic component in present disclosure utilize the property of the ultrasonic to recognize the type and thickness of the obstacle which is accumulated in the ultrasonic component, and to determine whether the warning message for sweeping the obstacle should be sent, so as to maintain the sensitivity of the ultrasonic component and further to prevent the ultrasonic component from mistakenly judging the car is sunk.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: September 27, 2022
    Inventor: Jr-Hui Hsieh
  • Patent number: 11448506
    Abstract: A gyro sensor includes a plurality of beams connected via a turnaround part. A groove is provided on a main surface of at least one beam of the plurality of beams. Wall thicknesses on the main surface of two sidewalls facing each other of the groove in a direction orthogonal to a longitudinal direction of the beam satisfy 0.9?T1/T2?1.1, where T1 is the wall thickness of one sidewall and T2 is the wall thickness of the other sidewall.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: September 20, 2022
    Inventor: Koichiro Komizo