Patents Examined by Hrayr A. Sayadian
  • Patent number: 10892292
    Abstract: A back-side illuminated image sensor includes memory regions formed in a semiconductor wafer. Each memory region is located between two opaque walls which extend into the semiconductor wafer. An opaque screen is arranged at the rear surface of the memory region and in electrical contact with the opaque walls.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: January 12, 2021
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Daniel Benoit, Olivier Hinsinger, Emmanuel Gourvest
  • Patent number: 10879106
    Abstract: A method for fabricating conductive deep trenches in conjunction with shallow trench isolations in a semiconductor device. The disclosed method introduces an integrated sequence during which a shallow trench is etched and filled before a deep trench is etched and filled. The disclosed method advantageously reduces cone defects and process complexity associated with the formation of a conductive deep trench within a shallow trench isolation structure. Fabricated under the integrated sequence, the conductive deep trench may extend through a shallow trench dielectric layer and into the substrate, where the top surfaces of both the conductive deep trench and shallow trench dielectric layer are substantially cone free.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: December 29, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Thomas Edward Lillibridge
  • Patent number: 10868184
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate and a gate structure formed over the fin structure. The FinFET device structure also includes a contact formed over the fin structure and adjacent to the gate structure. The FinFET device structure further includes a first hard mask layer formed over the gate structure, and an upper portion of the first hard mask layer has an inverted-T shape. In addition, the FinFET device structure includes a second hard mask layer formed over the contact, and the second hard mask layer has a T shape.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Ho Chiang, Cheng-Han Wu, Jyh-Huei Chen, Jhon-Jhy Liaw
  • Patent number: 10868025
    Abstract: In-process source-level material layers including a source-level sacrificial layer are formed over a substrate. An alternating stack of insulating layers and sacrificial material layers is formed over the in-process source-level material layers. A memory opening is formed through the alternating stack, and is filled with a memory film and a sacrificial opening fill structure. The source-level sacrificial layer is replaced with a source contact layer including a doped polycrystalline semiconductor material. The source contact layer can be formed by diffusing a metal in a metallic catalyst material through a semiconductor fill material layer that fills a source cavity formed by removal of the source-level sacrificial layer. The sacrificial opening fill structure is replaced with a vertical semiconductor channel, which can be formed with large grains due to large crystal sizes in the source contact layer. The sacrificial material layers are replaced with electrically conductive layers.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: December 15, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Fei Zhou, Adarsh Rajashekhar, Rahul Sharangpani, Raghuveer S. Makala
  • Patent number: 10854810
    Abstract: A passive magnetic device (PMD) has a base electrode, a multi-port signal structure (MPSS), and a substrate therebetween. The MPSS has a central plate residing in a second plane and at least two port tabs spaced apart from one another and extending from the central plate. The substrate has a central portion that defines a mesh structure between the base electrode and the central plate of the multi-port signal structure. A plurality of magnetic pillars are provided within the mesh structure, wherein each of the plurality of the magnetic pillars are spaced apart from one another and surrounded by a corresponding portion of the mesh structure. The PMD may provide a magnetically self-biased device that may be used as a radio frequency (RF) circulator, an RF isolator, and the like.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: December 1, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Andrew Arthur Ketterson, Xing Gu, Yongjie Cui, Xing Chen
  • Patent number: 10847529
    Abstract: Provided is a substrate processing method that may prevent the non-uniformity of the thickness of landing pads deposited on each step in the process of selectively depositing a landing pad in a vertical NAND device having a stepped structure. The substrate processing method includes stacking, a plurality of times, a stack structure including an insulating layer and a sacrificial layer and etching the stack structure to form a stepped structure having an upper surface, a lower surface, and a side surface connecting the upper surface and the lower surface. The method also includes forming a barrier layer on the stepped structure, forming a mask layer on the barrier layer and exposing at least a portion of the barrier layer by etching at least a portion of the mask layer with a first etching solution The method further includes etching the exposed barrier layer with a second etching solution and etching the mask layer with a third etching solution.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: November 24, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Tae Hee Yoo, Yoon Ki Min, Yong Min Yoo
  • Patent number: 10840344
    Abstract: A semiconductor device and a manufacturing method thereof includes a source contact structure, a gate stack structure including a side region adjacent to the source contact structure, and a center region extending from the side region. The semiconductor device further includes a source gate pattern disposed under the side region of the first gate stack structure. The source gate pattern has an inclined surface facing the source contact structure. The semiconductor device also includes a channel pattern penetrating the center region of the gate stack structure, the channel pattern extending toward and contacting the source contact structure.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: November 17, 2020
    Assignee: SK hynix Inc.
    Inventor: Kang Sik Choi
  • Patent number: 10832966
    Abstract: Structures and fabrication methods for a field-effect transistor. First and second spacers are formed adjacent to opposite sidewalls of a gate structure. A section of the gate structure is partially removed with a first etching process to form a cut that extends partially through the gate structure. After partially removing the section of the gate structure with the first etching process, upper sections of the first and second sidewall spacers arranged above the gate structure inside the cut are at least partially removed. After at least partially removing the upper sections of the first and second sidewall spacers, the section of the gate structure is completely removed from the cut with a second etching process. A dielectric material is deposited inside the cut to form a dielectric pillar.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: November 10, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chang Seo Park, Haiting Wang, Shimpei Yamaguchi, Junsic Hong, Yong Mo Yang, Scott Beasor
  • Patent number: 10833258
    Abstract: MRAM devices with in-situ encapsulation are provided. In one aspect, a method of forming an MRAM device includes: patterning an MRAM stack disposed on a dielectric into individual memory cell stacks, wherein the MRAM stack includes a bottom electrode, a MTJ, and a top electrode, and wherein the patterning is performed using an intermediate angle IBE landing on the dielectric; removing redeposited metal from the memory cell stacks using a high angle IBE; redepositing the dielectric along the sidewalls of the memory cell stacks using a low angle IBE to form a first layer of dielectric encapsulating the memory cell stacks; and depositing a second layer of dielectric, wherein the first/second layers of dielectric form a bilayer dielectric spacer structure, wherein the patterning, removing of the redeposited metal, and redepositing the dielectric steps are all performed in-situ. An MRAM device is also provided.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Ashim Dutta, Chih-Chao Yang, Daniel C. Edelstein, Karthik Yogendra, John C. Arnold
  • Patent number: 10818775
    Abstract: The method for fabricating a field-effect transistor comprises a step of producing a sacrificial gate and first and second spacers covering first, second and third parts of successive first to fifth semiconductor nanowires of a stack. The fabricating method comprises a step of forming a channel area of the transistor, which channel area is compressively stressed and distinct from the second part of the third nanowire. The channel area is connected to a source electrode of the transistor by the first part of the second nanowire, and to a drain electrode of the transistor by the third part of the second nanowire.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: October 27, 2020
    Assignees: Commissariat a l'energie atomique et aux energies alternatives, International Business Machines Corporation
    Inventors: Shay Reboh, Emmanuel Augendre, Remi Coquand, Nicolas Loubet
  • Patent number: 10818813
    Abstract: In order to improve the performance of a semiconductor device, a semiconductor layer EP is formed over a p-type semiconductor PR. An n-type semiconductor layer NR1 is formed over the semiconductor layer EP. The semiconductor layer PR, the semiconductor layer EP, and the semiconductor layer NR1 respectively configure part of a photoreceiver. A cap layer of a material different from that of the semiconductor layer EP is formed over the semiconductor layer EP, and a silicide layer, which is a reaction product of a metal and the material included in the cap layer, is formed within the cap layer. A plug having a barrier metal film BM1 is formed over the cap layer through the silicide layer. Here, a reaction product of the metal and the material included in the semiconductor layer NR1 is not formed within the semiconductor layer NR1.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 27, 2020
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Tomoo Nakayama, Shinichi Watanuki, Futoshi Komatsu, Teruhiro Kuwajima, Takashi Ogura, Hiroyuki Okuaki, Shigeaki Shimizu
  • Patent number: 10811281
    Abstract: A manufacturing method of a semiconductor device, includes: (a) preparing a lead frame having: a first tie bar extending in a first direction in plan view so as to couple a plurality of first leads to one another; a second tie bar extending in the first direction in plan view so as to couple a plurality of second leads to one another; a coupling portion coupled to the first tie bar and the second tie bar; a first chip mounting portion arranged between the first tie bar and the second tie bar in plan view; and a second chip mounting portion arranged between the first chip mounting portion and the second tie bar in plan view; and (b) after the (a), mounting a first semiconductor chip on the first chip mounting portion and mounting a second semiconductor chip on the second chip mounting portion.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: October 20, 2020
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Shoji Hashizume, Keita Takada
  • Patent number: 10811260
    Abstract: A method for fabricating a semiconductor device includes: forming a gate trench in a semiconductor substrate; forming a gate dielectric layer over a bottom surface and sidewalls of the gate trench; forming a first work function layer over the gate dielectric layer; doping a work function adjustment element to form a second work function layer which overlaps with the sidewalls of the gate trench; forming a gate conductive layer that partially fills the gate trench; and forming doped regions inside the semiconductor substrate on both sides of the gate trench.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: October 20, 2020
    Assignee: SK hynix Inc.
    Inventors: Tae-Su Jang, Jin-Chul Park, Ji-Hwan Park, Il-Sik Jang, Seong-Wan Ryu, Se-In Kwon, Jung-Ho Shin, Dae-Jin Ham
  • Patent number: 10811597
    Abstract: A magnetoresistive device with a magnetically fixed region having at least two ferromagnetic regions coupled together by an antiferromagnetic coupling region. At least one of the two ferromagnetic regions includes multiple alternating metal layers and magnetic layers and one or more interfacial layers. Wherein, each metal layer includes at least one of platinum, palladium, nickel, or gold, and the interfacial layers include at least one of an oxide, iron, or an alloy including cobalt and iron.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: October 20, 2020
    Assignee: Everspin Technologies, Inc.
    Inventor: Jijun Sun
  • Patent number: 10804275
    Abstract: A memory array includes memory cells of Z2-FET type arranged in rows and columns, wherein each memory cell includes a MOS-type selection transistor and a first region of a first conductivity type that is shared in common with a drain region of the first conductivity type of the selection transistors. The selection transistors of a same column of the memory array have a common drain region, a common source region, and a common channel region.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: October 13, 2020
    Assignee: STMicroelectronics SA
    Inventors: Hassan El Dirani, Thomas Bedecarrats, Philippe Galy
  • Patent number: 10782196
    Abstract: A semiconductor device includes a strain gauge on a substrate, the strain gauge configured to measure a stress of the substrate; and a temperature sensor disposed within the substrate, the temperature sensor being decoupled from the stress of the substrate.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: September 22, 2020
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Daniele Caltabiano
  • Patent number: 10763371
    Abstract: A thin film transistor is provided. The thin film transistor includes an oxide semiconductor layer including a source region, a drain region, and a channel region wherein a portion of the source and drain regions has an oxygen concentration less than the channel region. Further provided is a thin film transistor that includes an oxide semiconductor layer including a source region, a drain region, and a channel region, wherein a portion of the source and drain regions includes a dopant selected from the group consisting of aluminum, boron, gallium, indium, titanium, silicon, germanium, tin, lead, and combinations thereof.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: September 1, 2020
    Assignee: Joled Inc.
    Inventors: Narihiro Morosawa, Yoshihiro Oshima
  • Patent number: 10756176
    Abstract: A stacked nanosheet semiconductor device and method of forming are provided. In an illustrative embodiment, a gate all around (GAA) stacked nanosheet field effect transistor (FET) includes a plurality of stacked semiconductor channel nanosheet layers and a dummy nanosheet layer formed above a top one of the stacked semiconductor channel nanosheet layers, the dummy nanosheet formed from a dielectric material. The GAA stacked nanosheet FET also includes a high dielectric constant (high-k) material formed around each of the plurality of stacked semiconductor channel nanosheet layers and around the dummy nanosheet layer and a first work function (WF) metal formed around the plurality of stacked semiconductor channel nanosheet layers and the dummy nanosheet layer.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Takashi Ando, Jingyun Zhang, Choonghyun Lee, Alexander Reznicek
  • Patent number: 10756105
    Abstract: A method used in forming a memory array comprises forming a tier comprising conductor material above a substrate. Sacrificial islands comprising etch-stop material are formed directly above the conductor material of the tier comprising the conductor material. A stack comprising vertically-alternating insulative tiers and wordline tiers is formed above the sacrificial islands and the tier comprising the conductor material. Etching is conducted through the insulative tiers and the wordline tiers to the etch-stop material of individual of the sacrificial islands to form channel openings that have individual bases comprising the etch-stop material. The sacrificial islands are removed through individual of the channel openings to extend the individual channel openings to the tier comprising the conductor material. Channel material is formed in the extended-channel openings to the tier comprising the conductor material.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: August 25, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Yoshiaki Fukuzumi, M. Jared Barclay, Emilio Camerlenghi, Paolo Tessariol
  • Patent number: 10756186
    Abstract: An alternating stack of insulating layers and sacrificial material layers is formed over a substrate. The sacrificial material layers are formed as, or are subsequently replaced with, electrically conductive layers. Memory openings are formed through the alternating stack. A memory film is formed within each memory openings. A silicon-germanium alloy layer including germanium at an atomic concentration less than 25% is deposited within each memory opening. An oxidation process is performed on the silicon-germanium alloy layer. A vertical semiconductor channel including an unoxidized remaining material portion of the silicon-germanium alloy layer is formed, which includes germanium at an atomic concentration greater than 50%.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: August 25, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Yangyin Chen, Christopher Petti