Patents Examined by Hugh Maupin
  • Patent number: 11200697
    Abstract: An ambient temperature calibration process includes, in accordance with an embodiment, determining an ambient temperature calibration value for a global external resistance associated with a read out integrated circuit (ROIC) of an image capture component comprising a sensor array comprising a focal plane array of microbolometers arranged on the ROIC; determining an ambient temperature calibration value for a sensor integration time associated with the ROIC; and determining an ambient temperature calibration mapping for an offset mapping associated with the ROIC.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 14, 2021
    Assignee: FLIR Systems AB
    Inventors: Jonas Sandsten, Per Lilja, Henning Hagman, Marta Barenthin-Syberg, Tien Nguyen
  • Patent number: 11199633
    Abstract: Disclosed herein is radiation detector comprising: a radiation absorption layer configured to generate electric signals by absorbing radiation particles; an electronics layer comprising an electronic system configured to process or interpret the signals; a flexible PCB configured to receive output from the electronic system; wherein the radiation absorption layer and the flexible PCB are mounted on a same side of the electronics layer.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: December 14, 2021
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu, Chongshen Song
  • Patent number: 11200998
    Abstract: An x-ray chopper wheel assembly includes a disk chopper wheel and a source-side scatter plate that has a solid cross-sectional area that absorbs x-ray radiation and is substantially smaller than a solid cross-sectional area of the disk chopper wheel. The assembly also includes a support structure that secures the source-side scatter plate substantially parallel to the disk chopper wheel, with a source-side gap between the scatter plate and the disk chopper wheel being a distance that substantially prevents x-ray leakage. An additional, output-side scatter plate may also be provided to reduce x-ray leakage further. Embodiments enable safe operation while significantly reducing weight, which is advantageous for a variety of disk-chopper-wheel-based x-ray scanning systems, especially hand-held x-ray scanners.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: December 14, 2021
    Assignee: Viken Detection Corporation
    Inventor: Peter J. Rothschild
  • Patent number: 11200994
    Abstract: A gauge is provided for measuring one or more characteristics of a construction material such as a road surface. The gauge includes a detector, a base that carries the detector, and a source housing carried by the base and defining a shield material circumferentially extending inwards. A source rod is positioned within the housing and carries a source that is translatable between a shielded position within the housing and a measuring position external of the housing. The source rod has a source shield on the top thereof and a shield material spaced-downwardly from the source such that the source is completely enclosed when contained within the base.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 14, 2021
    Assignee: Troxler Electronic Laboratories, Inc.
    Inventors: William F. Troxler, Jr., Wewage Hiran Linus Dep, Robert Ernest Troxler
  • Patent number: 11195967
    Abstract: Methods and devices for detecting incident radiation are provided. The methods and devices use high quality single-crystals of photoactive semiconductor compounds in combination with metal anodes and metal cathodes that provide for enhanced photodetector performance.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: December 7, 2021
    Assignee: Northwestern University
    Inventors: Mercouri G. Kanatzidis, Yihui He
  • Patent number: 11185295
    Abstract: An imaging system includes a collimator assembly, a detector assembly and a control device. The collimator assembly is configured to collimate photons emitted from an imaged subject. The collimator assembly includes a plurality of slit-plates, each of the plurality slit-plates including one or more slits configured to collimate the photons in a first direction, and a plurality of slats parallel to a transverse plane of the imaging system. The detector assembly is configured to generate signals based on the collimated photons. The control device is configured to place the plurality of slit-plates in a plurality of locations to provide a plurality of fields of view of the imaging system.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: November 30, 2021
    Assignee: UIH AMERICA, INC.
    Inventors: Tao Feng, Hongdi Li
  • Patent number: 11167152
    Abstract: A system for generating a dose distribution is provided. The system may obtain a first dose distribution in at least a portion of a subject. The system may also obtain a trained machine learning model. The system may further generate, based on the first dose distribution and the trained machine learning model, a second dose distribution in the at least a portion of the subject, wherein the second dose distribution has a higher accuracy than that of the first dose distribution.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: November 9, 2021
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventor: Yanfang Liu
  • Patent number: 11162888
    Abstract: A system for predicting corrosion under insulation (CUI) in an infrastructure asset includes at least one infrared camera positioned to capture thermal images of the asset, at least one smart mount supporting and electrically coupled to the at least one infrared camera and including a wireless communication module, memory storage, a battery module operative to recharge the at least one infrared camera, an ambient sensor module adapted to obtain ambient condition data and a structural probe sensor to obtain CUI-related data from the asset. At least one computing device has a wireless communication module that communicates with the at least one smart mount and is configured with a machine learning algorithm that outputs a CUI prediction regarding the asset. A cloud computing platform receive and stores the received data and the prediction output and to receive verification data for updating the machine learning algorithm stored on the computing device.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: November 2, 2021
    Assignees: Saudi Arabian Oil Company
    Inventors: Ali Al Shehri, Ser Nam Lim, Ayman Amer, Mustafa Uzunbas, Ahmad Aldabbagh, Muhammad Ababtain, Vincent Cunningham
  • Patent number: 11163072
    Abstract: A device for contactlessly determining the straightness of at least one long product, where punctiform or linear measuring radiation is moved by a radiation source module over the long product at least transversely to the longitudinal direction of the long product during a measuring cycle. The intensity of detection radiation coming from an area of incidence of the measuring radiation is recorded by a radiation detection module in a time-resolved manner and is supplied to a control and evaluation unit. The spatial position of the areas of incidence and thus the straightness of a long product can be determined from location information regarding the areas of incidence in the longitudinal direction and from characteristic intensity values of the detection radiation. For a calibration, a reference straightness can be determined by carrying out multiple measuring cycles by rotating a long product of unknown straightness.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: November 2, 2021
    Assignee: Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V.
    Inventors: Daniel Carl, Volker Jetter, Tobias Schmid-Schirling
  • Patent number: 11162847
    Abstract: A method of attitude estimation of a spotted target. The method includes an offline training and an online estimation. The offline training includes establishing a three-dimensional geometric model of a target, performing region division according to the structure of the target, establishing an object-space temperature distribution model for each region of the target, establishing an infrared radiation transmission model of an intra-atmospheric target in six attitudes in observation by a detection system, constructing an image-space radiant energy model of the target in the six attitudes using the object-space temperature distribution model and the infrared radiation transmission model, and performing simulation calculation to obtain an infrared spectral curve of the spotted target regarding wavelength versus image-space-radiant-energy-of-target, so as to establish a mapping database regarding target-attitude versus spectrum.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: November 2, 2021
    Assignee: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Tianxu Zhang, Fenglin Wang, Shoukui Yao, Lei Lu, Xu Cheng
  • Patent number: 11156729
    Abstract: The present invention is a passive sensor to detect ionizing radiation over time. It employs a SAW sensor that incorporates a polymer film that deforms based on the chain-scission reaction as described upon irradiation. The polymer film coats the piezoelectric substrate and reflectors on the SAW sensor and, as it reacts to radiation, the film deforms due to the fracturing of the polymer molecules resulting in a loss of overall mass. As the SAW sensor is interrogated by an electrical signal, the wavelength of the response will change as the overall rigidity of the polymer film changes allowing for the detection of the level of radiation.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: October 26, 2021
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Jacqueline W. Quinn, Robert W. DeVor, Phillip R. Maloney
  • Patent number: 11150361
    Abstract: An x-ray imaging system includes an x-ray source and detector. The detector is a photon counting x-ray detector, enabling detection of photon-counting events. The system acquires at least one phase contrast image based on photon-counting events. The detector includes x-ray detector sub-modules, also referred to as wafers, each including detector elements. The sub-modules are oriented in edge-on geometry with their edge directed towards the x-ray source, assuming the x-rays enter through the edge. Each sub-module or wafer has a thickness with two opposite sides of different potentials to enable charge drift towards the side, where the detector elements/pixels, are arranged. The system estimates charge diffusion from a Compton interaction or an interaction through photoeffect related to an incident x-ray photon in a sub-module or wafer of the x-ray detector, and estimates a point of interaction of the x-ray photon sub-module based on the determined estimate of charge diffusion.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: October 19, 2021
    Assignee: PRISMATIC SENSORS AB
    Inventors: Mats Danielsson, Christel Sundberg
  • Patent number: 11142689
    Abstract: Disclosed are a yttrium-doped barium fluoride crystal and a preparation method and the use thereof, wherein the yttrium-doped barium fluoride crystal has a chemical composition of Ba(1?x)YxF2+x, in which 0.01?x?0.50. The yttrium-doped BaF2 crystal of the present invention has improved scintillation performance. The yttrium doping may greatly suppress the slow luminescence component of the BaF2 crystal and has an excellent fast/slow scintillation component ratio. The doped crystal is coupled to an optical detector to obtain a scintillation probe which is applicable to the fields of high time resolved measurement radiation such as high-energy physics, nuclear physics, ultrafast imaging and nuclear medicine imaging.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: October 12, 2021
    Assignees: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES, R&D CENTER, SHANGHAI INSTITUTE OF CERAMICS
    Inventors: Junfeng Chen, Yong Du, Shaohua Wang, Shiyun Sun, Xuenong Zhou, Xiang Li
  • Patent number: 11146222
    Abstract: The circuit area of an amplifier provided in a photon-counting radiation detector is decreased compared with the related art. A pulse amplification measurement circuit includes: an inverting amplification circuit that inverts and amplifies an input signal to generate an inverted amplified output; a feedback transistor that connects an input unit and an output unit of the inverting amplification circuit to each other; and a pulse measurement circuit that generates an output signal corresponding to the number of pulses of the inverted amplified output. The pulse measurement circuit is capable of supplying the output signal toward the feedback transistor.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: October 12, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Takahiro Shindoh, Kunihiko Iizuka, Shigenari Taguchi
  • Patent number: 11131780
    Abstract: The invention relates to a radiation detector (1), an imaging system and a related method for radiation detection. The detector comprises a direct conversion material (2) for converting x-ray and/or gamma radiation into electron-hole pairs by direct photon-matter interaction. The detector comprises an anode (3) and a cathode (4) arranged on opposite sides of the direct conversion material (2) such that the electrons and holes can respectively be collected by the anode and cathode. The cathode is substantially transparent to infrared radiation. The detector comprises a light guide layer (5) on the cathode at a side of the cathode that is opposite of the direct conversion material, in which the light guide layer is adapted for distributing infrared radiation over the direct conversion material. The detector comprises a reflector layer (6) arranged on the light guide layer (5) at a side opposite of the cathode, in which the reflector layer is adapted for substantially reflecting infrared radiation.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: September 28, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Christoph Herrmann
  • Patent number: 11123026
    Abstract: An x-ray imaging apparatus includes an x-ray source and detector with multiple detector elements. The source and detector are on a support that rotates around a subject, enabling projections at different view angles. The apparatus operates the x-ray source in switched kVp mode for alternately applying different voltages, including lower and higher voltages, during rotation to enable lower-energy and higher-energy exposures over the projections, providing for lower-energy projections and higher-energy projections. The x-ray detector is a photon-counting multi-bin detector allocating photon counts to multiple energy bins, and the apparatus selects counts from at least a subset of the bins to provide corresponding photon count information for both lower- and higher-energy projections.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: September 21, 2021
    Assignee: PRISMATIC SENSORS AB
    Inventors: Hans Bornefalk, Fredrik Grönberg, Mats Danielsson
  • Patent number: 11129265
    Abstract: Various methods and systems are provided for a radiation shielding component including a plurality of parts fused together by metal infiltrated through junctions between adjacent, interconnected parts. In one embodiment, members on a side of a panel may be interlocked with indentations on a side of another and then metal may be infiltrated through a junction between the two panels to fuse the adjacent panels.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: September 21, 2021
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventor: Paul Michael Wervey
  • Patent number: 11112354
    Abstract: A method for measuring carbon concentration in silicon single crystal according to the present invention includes a step of measuring a carbon concentration of a sample of silicon single crystal using FT-IR, a step of measuring a temperature of the sample during, prior to, or after the measurement of the carbon concentration of the sample, and steps of correcting a measured value Ycs of the carbon concentration of the sample based on the measuring temperature of the sample when the measured Ycs value of the carbon concentration of the sample is at or below 0.5×1016 atoms/cm3.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: September 7, 2021
    Assignee: SUMCO CORPORATION
    Inventor: Shogo Kobayashi
  • Patent number: 11109827
    Abstract: An X-ray imaging apparatus includes a table, an imager configured to capture a plurality of X-ray images, a rotating mechanism, a moving mechanism, and an image processor. The image processor is configured to generate a long image by performing processing of varying magnifications of the plurality of X-ray images based on an amount of relative movement of the table and the imager and splicing the plurality of X-ray images when imaging is performed at a plurality of imaging positions in a state in which an optical axis of X-rays radiated from an X-ray irradiator is inclined with respect to the table.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: September 7, 2021
    Assignee: Shimadzu Corporation
    Inventors: Koki Yoshida, Hidetaka Takezawa, Shohei Okubo
  • Patent number: 11099060
    Abstract: A metal-insulator-metal (MIM) high-sensitivity plasmon polariton (SPP) terahertz wave detector includes a rectangular cavity, an absorption cavity, a silver block, two waveguides, three metal films, a terahertz probe light, a signal light, and an opto-electric detector; the terahertz probe light is located at an upper end of the rectangular cavity; the rectangular cavity is located at an input end of the terahertz probe wave; and the absorption cavity is connected with a first waveguide; the silver block is disposed within the first waveguide, and is movable; and the first waveguide is connected with a second waveguide.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: August 24, 2021
    Assignee: Shenzhen University
    Inventors: Zhengbiao Ouyang, Zhiliang Chen