Patents Examined by Hung Q Lam
  • Patent number: 10627572
    Abstract: Provided is an optical waveguide element having a reduced optical loss, a lower driving voltage, and a reduced size. A rib waveguide core of an optical waveguide includes a first core region and a second core region which constitute a PN junction and which are provided so as to overlap each other in a horizontal direction. A depletion layer is formed between the first core region and the second core region. The depletion layer extends from a rib region to both of two slab regions. The depletion layer is located so as to be vertically lower in the slab regions than in the rib region.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: April 21, 2020
    Assignee: FUJIKURA LTD.
    Inventor: Kensuke Ogawa
  • Patent number: 10623838
    Abstract: An apparatus can include an optical transceiver having a body with a first end at which a circuitry interface is located to facilitate transfer of data between a network appliance and the optical transceiver. The apparatus further includes a four-cable interface at a second end of the body. The four-cable interface releasably receives four independently releasable connectors for transfer of optical signals between the optical transceiver and respective ferrules of the four independently releasable connectors. In some examples, a carrier may be provided that is releasably connected with the four-cable interface and that includes four sockets for respectively independently receiving the four independently receivable connectors so as to facilitate collective insertion and removal of the four independently releasable connectors relative to the four-cable interface.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 14, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Alaa Adel Mahdi Hayder, Kanika Gupta, Jason Eslick
  • Patent number: 10613286
    Abstract: A cable adaptor case for sorting a first plurality of cables and adapting a plurality of types of cables comprising a cable tray for holding cables, an adaptor tray for adapting a first plurality of cables to a second plurality of cables, and a lid which is removably attached and hingably attached to the cable tray.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: April 7, 2020
    Assignee: AFL Telecommunications LLC
    Inventors: Wilfred J. Courchaine, Steve Polidan, Phillip Turner, Matthew Johnston, Roger Vaughn
  • Patent number: 10605992
    Abstract: A wafer structure includes a diffractive lens disposed on a backside of a wafer and coupled to a front side waveguide, the diffractive lens being configured to receive light and focus the light to the front side waveguide.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: March 31, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yoba Amoah, Brennan J. Brown, John J. Ellis-Monaghan, Ashleigh R. Kreider
  • Patent number: 10591802
    Abstract: An on-chip optical phased array includes an array of photonic antenna units connected in series by photonic waveguides and arranged in a two-dimensional array to produce complex still and scanning optical patterns through optical interference effect. Each antenna unit includes an output photonic antenna (e.g. grating antenna), and a waveguide phase shifter for adjusting the optical phase of the optical beam output by the antenna unit. The grating antenna and the waveguide phase shifter are formed in the same optical wave guiding layer which includes a core layer between two cladding layers. The grating antennas may be a shallow-etched structure or a deep-etched edge-modulated grating. The optical phased array, including the array of photonic antenna units and the electrodes that connect and provide electrical power to them, can be made on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) or compatible fabrication processes.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: March 17, 2020
    Assignee: Litexel Inc.
    Inventors: Xiaochen Sun, Lingxuan Zhang, Ningning Feng
  • Patent number: 10587848
    Abstract: A display subsystem for a virtual image generation system for use by an end user comprises a display, an optical fiber having a polarization-maintaining (PM) transmission fiber section and a non-PM scanning fiber section, a light source configured for injecting a linearly polarized light beam into the transmission fiber section, such that the linearly polarized light beam is emitted from the scanning fiber section, a mechanical scanning drive assembly in which the scanning fiber section is affixed, wherein the mechanical scanning drive assembly is configured for displacing the scanning optical fiber section is order to scan the emitted light beam, and a display configured for receiving the scanned light beam and generating an image to the end user.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: March 10, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Ivan Yeoh, Lionel Ernest Edwin, David Tinch
  • Patent number: 10578799
    Abstract: Disclosed herein are designs, structures and techniques for advanced packaging of multi-function photonic integrated circuits that allow such high-performance multi-function photonic integrated circuits to be co-packaged with a high-performance multi-function ASIC thereby significantly reducing strenuous interconnect challenges and lowering costs, power and size of the overall devices.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: March 3, 2020
    Assignee: Acaia Communications
    Inventors: Christopher Doerr, Eric Swanson, Diedrik Vermeulen, Saeid Azemati, Jon Stahl
  • Patent number: 10578814
    Abstract: An optical transmission device according to the present disclosure includes: an optical connector connection unit to which a connector unit of an optical cable is attached; a light emitting end configured to emit light to transmit an optical signal via the optical cable, and configured to radiate light to a reflection surface of the connector; and a driving unit configured to drive the reflection surface to refract the light radiated to the reflection surface toward an optical transmission path of the optical cable through refraction on the reflection surface in the case where the connector unit is attached in first orientation, and configured to drive the reflection surface to refract the light radiated to the reflection surface toward the optical transmission path of the optical cable through refraction on the reflection surface in the case where the connector unit is connected in second orientation that is different from the first orientation.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: March 3, 2020
    Assignee: SONY CORPORATION
    Inventors: Yasuhisa Nakajima, Masanari Yamamoto
  • Patent number: 10564369
    Abstract: The present disclosure relates to an optical fiber alignment device that has an alignment housing that includes first and second ends. The alignment housing defines a fiber insertion axis that extends through the alignment housing between the first and second ends. The alignment housing includes a fiber alignment region at an intermediate location between the first and second ends. First and second fiber alignment rods are positioned within the alignment housing. The first and second fiber alignment rods cooperate to define a fiber alignment groove that extends along the fiber insertion axis. The first and second fiber alignment rods each having rounded ends positioned at the first and second ends of the alignment housing.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: February 18, 2020
    Assignees: CommScope Technologies LLC, CommScope Connectivity Belgium BVBA
    Inventors: Michael Gurreri, Robert Charles Flaig, Randall Bobby Paul, Danny Willy August Verheyden, David Donald Erdman, Dwight A. Bretz
  • Patent number: 10557977
    Abstract: Methods, systems and devices for diffractive waveplate lens and mirror systems allowing electronically focusing light at different focal planes. The system can be incorporated into a variety of optical schemes for providing electrical control of transmission. In another embodiment, the system comprises diffractive waveplates of different functionality to provide a system for controlling not only focusing but other propagation properties of light including direction, phase profile, and intensity distribution.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: February 11, 2020
    Assignees: Beam Engineering for Advanced Measurements Co., U.S. Government as represented by the Secretary of the Army
    Inventors: Nelson V. Tabirian, Svetlana Serak, Olena Uskova, David E. Roberts, Anna Tabirian, Diane Steeves, Brian Kimball
  • Patent number: 10550030
    Abstract: Provided is an optical fiber containing an alkali metal element or the like having a smaller diffusion coefficient than K and having a low Rayleigh scattering loss. An optical fiber is composed of silica glass and includes a core and a cladding arranged to surround the core which has a lower refractive index than the core. The core includes a first core including a central axis and a second core arranged to surround the first core. The average concentration of an alkali metal element or alkaline-earth metal element in the first core is 10 mol ppm or less. The average concentration of chlorine in the first core is 2000 mol ppm or more. The average concentration of an alkali metal element or alkaline-earth metal element in the second core is 10 mol ppm or more. The average concentration of chlorine in the second core is 10 to 600 mol ppm.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: February 4, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hirotaka Sakuma, Yoshiaki Tamura, Keisei Morita
  • Patent number: 10551560
    Abstract: Arrays of tapered light-guides enable the development of snapshot multi-dimensional imaging systems, such as containing wavelength information in addition to spatial (x,y) image intensity-distribution information. As a result of the tapered guides, the input and output of the array can have the same overall dimension while producing greater total inter-guide free space at the output plane than present at the input plane for the introduction of optical elements, such as dispersers, as needed for particular applications. Individual guides may be tapered at different rates within the array and the array itself may be tapered as a whole.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 4, 2020
    Inventor: Tomasz S. Tkaczyk
  • Patent number: 10551645
    Abstract: According to one embodiment, a waveguide element includes a first crystal region, and a second crystal region. The first crystal region extends in a first direction and includes a first nitride semiconductor. The second crystal region extends in the first direction, includes a second nitride semiconductor, and is continuous with the first crystal region. A second direction crosses the first direction. The second direction is from the first crystal region toward the second crystal region. A <0001> direction of the first crystal region is from the first crystal region toward the second crystal region. A <0001> direction of the second crystal region is from the second crystal region toward the first crystal region.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: February 4, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshiki Hikosaka
  • Patent number: 10545299
    Abstract: A connector assembly includes an adapter, a housing, a ferrule, and a sensor. The housing is received by the adapter and has a bore. The ferrule is translatable within the bore of the housing. The sensor is mounted on the housing or on the adapter. The sensor is configured for detecting translation of the ferrule. An electrical characteristic of the sensor changes to indicate translation of the ferrule to a predetermined position.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 28, 2020
    Assignee: Go!Foton Holdings, Inc.
    Inventors: Kenichiro Takeuchi, Haiguang Lu, Chi Kong Paul Ng
  • Patent number: 10547406
    Abstract: An optical element includes a gain chip, a ring modulator, which is a band-pass filter, a first optical waveguide and a second optical waveguide that are optically connected to the ring modulator, and a heater, wherein the first optical waveguide and the second optical waveguide are formed to be equal in optical path length (have no difference in optical path length) between a first light coupling point and a second light coupling point and equal in shape and length between the first light coupling point and the second light coupling point (to be symmetrical with the ring modulator interposed therebetween (with respect to the ring modulator)).
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: January 28, 2020
    Assignees: FUJITSU LIMITED, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventor: Tomoyuki Akiyama
  • Patent number: 10534142
    Abstract: An assembly includes: a first circuit board, having an electrical connector assembly and an optical fiber connector assembly side by side, the electrical connector assembly is protrudingly provided with a first guiding mechanism in a front-rear direction, which includes a first guiding section and a second guiding section, and the optical fiber connector assembly has an aligning portion; and a second circuit board, having a mating electrical connector assembly and a mating optical fiber connector assembly side by side, the mating electrical connector assembly has a first matching region, which includes a first matching section and a second matching section, and the mating optical fiber connector assembly has an adaptation portion. When the first guiding section penetrates through the first matching section and enters the second guiding section, the aligning portion starts entering the adaptation portion.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: January 14, 2020
    Assignee: LOTES CO., LTD
    Inventor: Qi Xiao Yang
  • Patent number: 10514500
    Abstract: An integrated device and a fabrication method thereof are provided. In the device, by using various anisotropic silicon etching techniques, the silicon substrate layer and the expitaxial buffer layer under the device structure are removed, an ultra-thin device monolithically integrated with a suspended LED, an optical waveguide and a photodetector is obtained by further using the nitride back thinning etching technique. In the device, the light source, the optical waveguide and the photodetector are integrated on the same chip. The light emitted by the LED is laterally coupled to the optical waveguide, transmitted over the optical waveguide, and detected by the photodetector at the other end of the optical waveguide, thereby achieving a planar photon monolithically integrated device which is applied in the fields of optical transmission and optical sensing.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: December 24, 2019
    Assignee: Nanjing University of Posts and Telecommunications
    Inventors: Yongjin Wang, Guixia Zhu, Dan Bai, Jialei Yuan, Yin Xu
  • Patent number: 10514512
    Abstract: Optical connectors are provided for connecting sets of optical waveguides, such as optical fiber ribbons to each other, to printed circuit boards, or to backplanes. The provided connectors utilize expanded beam optics with non-contact optical mating resulting in relaxed mechanical precision requirements. The provided connectors can have low optical loss, are easily scalable to high channel count (optical fibers per connector) and can be compatible with low insertion force blind mating.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 24, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael A. Haase, Terry L. Smith, Barry J. Koch, Ding Wang, Alexander R. Mathews
  • Patent number: 10514510
    Abstract: The present disclosure is directed to a keyed optical component assembly that ensures that the same has a proper orientation when press-fit into or otherwise coupled to a complimentary opening of an optical subassembly housing. In an embodiment, the keyed optical component assembly includes a base portion defined by a first end and a second end disposed opposite the first end along a longitudinal axis. A first arcuate region extends from the first end towards the second end and transitions into a tapered region. A second arcuate region extends from the second end towards the first end and also transitions into the tapered region. Therefore, the tapered region extends between the first arcuate region and the second arcuate region, and generally tapers/narrows from the second arcuate region to the first arcuate region. The resulting shape of the base portion may generally be described as an asymmetric tear-drop shape.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: December 24, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Justin Lii, Hao-Hsiang Liao
  • Patent number: 10502901
    Abstract: A tunable light source includes a light source; a wavelength selecting device that selects, according to a control signal, output light with a specific wavelength from light output from the light source; and a wavelength monitor including a wavelength filter including multiple output ports corresponding to filtering paths through which the output light passes, and a light-receiving device that is disposed to face one of the output ports and receives light output from the one of the output ports. The wavelength filter is configured such that a maximum quantity of the light output from the one of the output ports facing the light-receiving device becomes greater than a maximum quantity of light output from another one of the output ports.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: December 10, 2019
    Assignee: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventor: Masaki Sugiyama