Patents Examined by Jafar Parsa
  • Patent number: 9950996
    Abstract: The present invention provides bio-based aromatic diisocyanate of formula (I). [Formula should be inserted here] wherein X is OCH3, Y is selected from —H or OCH3, and m=0-12. The present invention further provides a method for preparation of aromatic diisocyanate of formula (I) useful for preparation of polyurethane.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: April 24, 2018
    Assignee: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Parakash Purushottam Wadgaonkar, Sachin Suresh Kuhire
  • Patent number: 9951000
    Abstract: A method for synthesizing florfenicol comprises the steps of cyclization, selective reduction, fluorination, ring opening, deprotection, acylation, esterification with sulfonic acids, epimerization and hydrolysis. Florfenicol is prepared by successively purifying, selectively reducing, and epimerizing chiral (R)-amino ketones. This improves atom economy, reduces waste water pollution and accordingly reduces costs for treating waste water and pollution to the environment, thus lowering costs and simplifying the process. Furthermore, triethylamine hydrofluoride is used as a fluorinating reagent, resulting in improved safety, because of the use of liquid reaction conditions as compared to gaseous reaction conditions, and reduced corrosion to the reaction equipment.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: April 24, 2018
    Inventors: Yaowu Peng, Wenjing Tian, Qing Ye, Zhicheng Fang
  • Patent number: 9938213
    Abstract: This invention pertains to a method for removing acidic impurity from halogenated olefins, especially methods for removing acidic impurity from halogenated propenes, and even more particularly to methods for removing acidic impurity from 1,3,3,3-tetrafluoro-1-propene (HFO-1234ze), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), 1-chloro-3,3,3-trifluoro-1-propene (HCFO-1233zd), and 2-chloro-3,3,3-trifluoro-1-propene (HCFO-1233xf). The method is conducted by passing the halogenated olefin stream, in liquid or gas form, through a solid adsorbent bed, which contains at least one acid reactive agent.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: April 10, 2018
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Hsueh Sung Tung
  • Patent number: 9938217
    Abstract: Herein disclosed is a dry reforming reactor comprising a gas inlet near the bottom of the reactor; a gas outlet near the top of the reactor; a fluidized bed comprising a catalyst; and one or more hydrogen membranes comprising palladium (Pd). In some cases, the one or more hydrogen membranes comprises Pd alloy membranes, or Pd supported on ceramics or metals. In some cases, the one or more hydrogen membranes are placed vertically in the reactor as hydrogen membrane tubes hanging from the top of the reactor. In some cases, the hydrogen membranes are configured to selectively collect hydrogen from the tubes via one or more internal manifolds and sent to an external hydrogen collection system.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 10, 2018
    Assignee: RES USA, LLC
    Inventors: Harold A. Wright, Mark K. Robertson, Weibin Jiang
  • Patent number: 9938208
    Abstract: The present invention relates to a process for preparing 1,1,1-trifluoro-2,3-dichloropropane which comprises contacting chlorine with 3,3,3-trifluoropropene in the presence of a catalyst to form 1,1,1-trifluoro-2,3-dichloropropane, wherein the catalyst comprises at least one metal halide, where the metal is a metal from Group 13, 14 or 15 of the periodic table or a transition metal or combination thereof.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: April 10, 2018
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Xuehui Sun, Mario Joseph Nappa
  • Patent number: 9932282
    Abstract: A method for producing 1-chloro-3,3,3-trifluoropropene efficiently from an intermediate product having a low reactivity is provided. A method for producing trans-1-chloro-3,3,3-trifluoropropene comprising reacting a halogenated hydrocarbon compound having 3 carbon atoms represented by Formula (1) shown below in a gas phase with hydrogen fluoride in the presence of chlorine is provided. C3HXClYFZ (1) wherein X is 2 or 3; and when X=2, Y is an integer from 1 to 4, Z is an integer from 0 to 3, and Y+Z=4; and when X=3, Y is an integer from 1 to 5, Z is an integer from 0 to 4, and Y+Z=5; provided that Formula (1) shown above represents a halogenated hydrocarbon compound having 3 carbon atoms excluding trans-1-chloro-3,3,3-trifluoropropene.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: April 3, 2018
    Assignee: CENTRAL GLASS COMPANY, LIMITED
    Inventors: Satoru Okamoto, Fuyuhiko Sakyu, Masatomi Kanai, Takamasa Kitamoto
  • Patent number: 9931621
    Abstract: The invention relates to long chain alcohol, to processes for catalytically producing long chain alcohol from carbon monoxide and molecular hydrogen, to equipment useful in such processes, and to the use of long chain alcohol, e.g., for producing fuel, lubricating oil, detergent, and plasticizer. The catalyst is mesoporous and comprises iron and copper.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: April 3, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kapil Kandel, Paul F. Keusenkothen, Jeevan S. Abichandani
  • Patent number: 9932230
    Abstract: A method for conversion of greenhouse gases comprises: introducing a flow of a dehumidified gaseous source of carbon dioxide into a reaction vessel; introducing a flow of a dehumidified gaseous source of methane into the reaction vessel; and irradiating catalytic material in the reaction vessel with microwave energy. The irradiated catalytic material is heated and catalyzes an endothermic reaction of carbon dioxide and methane that produces hydrogen and carbon monoxide. At least a portion of heat required to maintain a temperature within the reaction vessel is supplied by the microwave energy. A mixture that includes carbon monoxide and hydrogen can undergo catalyzed reactions producing multiple-carbon reaction products in a lower-temperature portion of the reaction vessel.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: April 3, 2018
    Assignee: ECOKAP Technologies LLC
    Inventors: Paul E. King, Ben Zion Livneh
  • Patent number: 9931616
    Abstract: The invention relates to templated active material, including those deriving order from organic and/or inorganic templating agents. The invention also relates to methods for producing templated active material, and to active material produced by such methods, and the use of such templated active material for producing oxygenate.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: April 3, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kapil Kandel, Paul F. Keusenkothen, Jeevan S. Abichandani
  • Patent number: 9926244
    Abstract: The present disclosure provides separation processes that use azeotropic or azeotropic-like compositions of 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) that allow for improved recovery rates of 1-chloro-3,3,3-trifluoropropene during or after manufacturing processes. Such recovery or separation processes can utilize the unique properties of azeotropic or azeotropic-like composition with various combinations of separation techniques (e.g., distillation and decanting) that yield highly pure compositions of 1-chloro-3,3,3-trifluoropropene and simultaneously offer high yields of 1-chloro-3,3,3-trifluoropropene. Such highly pure compositions of 1-chloro-3,3,3-trifluoropropene may find useful applications in polymer technology as monomers or comonomers.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 27, 2018
    Assignee: Honeywell International Inc.
    Inventors: Yuon Chiu, Stephen A. Cottrell, Hang T. Pham, Gustavo Cerri
  • Patent number: 9926257
    Abstract: The present invention relates to a continuous method for the preparation of (S)-2-acetyloxypropionic acid from an aqueous solution of lactic acid and acetic anhydride, in acetic acid. (S)-2-acetyloxypropionic acid is used for the preparation of (S)-2-acetyloxypropionic acid chloride, an essential intermediate compound for the preparation of lopamidol and has to be industrially produced with high purity and suitable quality for producing lopamidol according to the Pharmacopoeia requirements. The continuous process according to the invention, comprises therefore also the chlorination steps of (S)-2-acetyloxypropionic acid with thionyl chloride to give the corresponding (S)-2-acetyloxypropionic acid chloride which is further distilled to give the suitable purity characteristics for its use for the preparation of non-ionic iodinated contrast agents as lopamidol.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: March 27, 2018
    Assignee: BRACCO IMAGING S.P.A.
    Inventors: Silvia Ceragioli, Pietro Delogu, Armando Mortillaro, Alfonso Nardelli, Stefano Sguassero, Rosario Velardi, Carlo Felice Viscardi
  • Patent number: 9926247
    Abstract: A process for the preparation of ethylene glycol comprising the steps of hydrogenating a composition comprising C2-oxygenate compounds in the gas phase in the presence of a catalyst.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: March 27, 2018
    Assignee: Haldor Topsoe A/S
    Inventors: Christian Mårup Osmundsen, Esben Taarning, Martin Spangsberg Holm
  • Patent number: 9919982
    Abstract: A method for gas processing, in particular for processing biogas of a biogas plant in which in one method step a membrane process or a reactive process is executed, and in at least one further method step an adsorption and/or absorption process is executed.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: March 20, 2018
    Assignee: Airbus DS GmbH
    Inventors: Carsten Matthias, Walter Jehle
  • Patent number: 9919981
    Abstract: A feedstream comprising hydrogen and a gas selected from carbon monoxide, carbon dioxide, or a combination thereof is converted to a product mixture containing a combination of saturated and unsaturated two carbon atom and three carbon atom hydrocarbons via contact with a mixed catalyst comprising a mixed metal oxide catalyst selected from a copper oxide, copper oxide/zinc oxide, copper oxide/alumina, copper oxide/zinc oxide/alumina catalyst, a zinc oxide/chromium oxide catalyst, or a combination thereof, in admixture with a molecular sieve catalyst having a CHA, AEI, AEL, AFI, BEA, or DDR framework type, or a combination of such molecular sieves. Exemplary molecular sieve catalysts include SAPO-34, SAPO-18, SAPO-5, and Beta. Advantages include reduced production of C1 hydrocarbons, C4 and higher hydrocarbons, or both; long catalyst lifetimes; desirable conversions; and desirable proportions of C2 and C3 paraffins.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: March 20, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Adam Chojecki, Davy Nieskens, Thomas Davidian, Peter E. Groenendijk, Matthijs Ruitenbeek, Barry B. Fish, Max M. Tirtowidjojo, Garmt R. Meima
  • Patent number: 9914683
    Abstract: A method of synthesizing fuel from an aqueous solution includes pumping the aqueous solution, containing dissolved inorganic carbon, from a body of water into a carbon extraction unit. The method further includes extracting the dissolved inorganic carbon from the aqueous solution to create CO2 by changing a pH of the aqueous solution in the carbon extraction unit. The CO2 derived in the carbon extraction unit is received by a fuel synthesis unit, and the CO2 is converted into fuel including at least one of a hydrocarbon, an ether, or an alcohol using the fuel synthesis unit.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: March 13, 2018
    Assignee: X Development LLC
    Inventor: Matthew D. Eisaman
  • Patent number: 9902670
    Abstract: The present invention provides a method that produces a composition containing 1223xd and/or 1213xa by a gas-phase reaction, and that achieves production efficiency higher than known methods. The present invention provides a method for producing a composition containing at least one fluorine-containing olefin selected from 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd) and 1,1,2-trichloro-3,3,3-trifluoropropene (CFO-1213xa), the method comprising subjecting at least one starting compound selected from a chlorine-containing alkane represented by Formula (1-1): CF3CHXCHX2, wherein each X is independently H or Cl, with the proviso that at least one X represents Cl, and a chlorine-containing alkene represented by Formula (1-2): CF3CX?CX2, wherein each X is independently H or Cl, with the proviso that at least one X represents Cl, to a gas-phase oxychlorination reaction in a temperature range of 380° C. or lower in the presence of oxidative gas and hydrogen chloride gas.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: February 27, 2018
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Daisuke Karube, Shun Ohkubo, Tatsuya Takakuwa
  • Patent number: 9896407
    Abstract: The invention relates to a method for producing dinitrotoluene, comprising the following steps: a) nitrating toluene with a mixture of nitric acid and sulfuric acid and subsequently separating a sulfuric-acid-containing aqueous phase that arises in the nitration, wherein a raw dinitrotoluene is obtained, b) washing the raw dinitrotoluene in a water wash with neutral and/or alkaline washing water, wherein a pre-cleaned dinitrotoluene, which contains at least water in addition to dinitrotoluene, is obtained after the washing water used in the last wash has been separated, and c) separating the water from the pre-cleaned dinitrotoluene, d) collecting the waste water from steps a), b), and/or c), e) optionally extracting the collected waste water from step d) with toluene and returning the thus obtained organic phase to step a), f) freeing the collected waste water from step d), or, if the optional step e) is performed, the extracted waste water from step e), of toluene in a toluene stripper, wherein a toluene-co
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: February 20, 2018
    Assignee: Covestro Deutschland AG
    Inventors: Thomas Knauf, Jürgen Münnig, Wolfgang Lorenz, Bernd Pennemann
  • Patent number: 9890041
    Abstract: Process for the production of synthesis gas from hydrocarbon feed containing higher hydrocarbons comprising bypassing a portion of the hydrocarbon feed around a first pre-reforming stage and passing the pre-reformed and bypassed portions through at least a second pre-reforming stage.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: February 13, 2018
    Assignee: Haldor Topsoe A/S
    Inventors: Thomas Sandahl Christensen, Pia Elholm
  • Patent number: 9890111
    Abstract: The crystal structure at 2.16 ? resolution of the full-length bacterial bifunctional transglycosylase penicillin-binding protein 1b (PBP1b) from Escherichia coli, in complex with its inhibitor moenomycin, is provided. The atomic coordinates of the complex as well as the moenomycin binding site are provided. Three dimensional structures of amino acid residues involved in moenomycin binding and transglycosylation activity are identified. Binding site for peptidoglycan synthesis inhibitors comprising inhibitor-binding site comprises amino acid residues from at least one of transglycosylase (TG), UvrB domain 2 homolog (UB2H) and transmembrane (TM) domains of PBP1b are identified at an atomic level of resolution. Methods for rational drug design based on the atomic coordinates are provided. Methods for screening for antibiotics based on anisotropic binding assay and transglycosylase inhibitor assays are provided. Novel antibiotics based on the screening assays of the invention are disclosed.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: February 13, 2018
    Assignee: Academia Sinica
    Inventors: Chi-Huey Wong, Che Alex Ma, Ting-Jen Rachel Cheng, Wei-Chieh Cheng
  • Patent number: 9890114
    Abstract: There is provided a urea synthesis method having excellent reliability and productivity with the amount of oxygen used as a corrosion-resistant agent minimized without using special duplex stainless steel. In a urea synthesis apparatus having a synthesis tower, a stripper, and a condenser, general-purpose austenitic-ferritic duplex stainless steel with Cr content: 21 to 26 wt %, Ni content: 4.5 to 7.5 wt %, Mo content: 2.5 to 3.5 wt %, N content: 0.08 to 0.30 wt %, C content: 0.03 wt % or less, Si content: 1.0 wt % or less, Mn content: 2.0 wt % or less, P content: 0.04 wt % or less, and S content: 0.03 wt % is used as a urea synthesis apparatus material in at least some of parts where the urea synthesis apparatus comes into contact with a fluid having corrosiveness, and oxygen feed concentration with respect to carbon dioxide is 100 to 2,000 ppm.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: February 13, 2018
    Assignee: TOYO ENGINEERING CORPORATION
    Inventors: Masashi Takahashi, Eiki Nagashima