Patents Examined by Jaison P Thomas
  • Patent number: 11965088
    Abstract: The present invention relates to the technical field of photoelectric materials, and in particular, to an alcohol dispersion of a conductive polyethylenedioxythiophene, and a method for preparing same and use of same. The present invention comprises a conductive polyethylenedioxythiophene and an alcohol, and the conductive polyethylenedioxythiophene comprises a polyethylenedioxythiophene cation and a fluorinated sulfonic acid ionomer counter anion. The present invention prepares a PEDOT alcohol dispersion by using an alcohol-dispersible highly fluorinated sulfonic acid ionomer as a counter anion to replace PSS, solving the hygroscopicity problem in conventional aqueous dispersions, and solving the problem that a conventional conductive aqueous dispersion of polyethylenedioxythiophene cannot be evenly applied on a hydrophobic surface due to high surface tension.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: April 23, 2024
    Assignee: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Yinhua Zhou, Youyu Jiang, Xinyun Dong
  • Patent number: 11939471
    Abstract: Addition curing electrically conductive liquid silicone rubber (LSR) compositions, their methods of preparation, and cured elastomeric products made from the compositions are provided. The compositions are cured to form elastomeric products suitable for high voltage applications such as cable joints, cable terminal applications, cable accessories and connectors. In general, the composition comprises: (a) at least one polydiorganosiloxane having at least two alkenyl groups per molecule: (b) at least one organohydrogenpolysiloxane: (c) at least one reinforcing filler: (d) at least one hydrosilylation catalyst: and (e) an electrically conductive filler. Component (e) comprises: (i) extra conductive carbon black: and (ii) single walled carbon nanotubes.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: March 26, 2024
    Assignee: DOW SILICONES CORPORATION
    Inventors: Yusheng Chen, Peng Wang, Shaohui Wang, Rui Wang, Jianjun Gao, Chunming Zhang
  • Patent number: 11930695
    Abstract: A block copolymer includes an end group, a block that binds to the end group, and a block that does not bind to the end group. The block that does not bind to the end group contains at least one non-crosslinkable constitutional unit represented by the formula (X) and/or at least one non-crosslinkable constitutional unit represented by the formula (Z). At least one of formulas (i) XI>XII, (ii) ZI>ZII and (iii) XI+ZI>XII+ZII is satisfied when the total number of non-crosslinkable constitutional units represented by formulas (X) and (Z) in the block that does not bind to the end group are represented by XI and ZI, respectively, and the total number of non-crosslinkable constitutional units represented by formulas (X) and (Z) in the block that binds to the end group are represented by XII and ZII, respectively.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: March 12, 2024
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Ken Kashima, Mayuko Sugiyama, Mio Shiratori, Katsuhiro Suenobu
  • Patent number: 11920042
    Abstract: Described herein is an ink solution, comprising: i. a composition having the formula ABX3; ii. a compound having the formula NH2—R1—NH2; and iii. a solvent. Methods for producing polycrystalline perovskite films using the ink solutions described herein in a fast blading process and the use of the films in photoactive and photovoltaic applications are additionally described.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: March 5, 2024
    Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Jinsong Huang, Guang Yang, Wuqiang Wu
  • Patent number: 11912898
    Abstract: A CNS millbase dispersion, comprises a solvent and up to 0.5 wt % of at least one CNS-derived material dispersed in the millbase dispersion and selected from the group consisting of: carbon nanostructures, fragments of carbon nanostructures, fractured carbon nanotubes, and any combination thereof. The carbon nanostructures or fragments of carbon nanostructures include a plurality of multiwall carbon nanotubes that are crosslinked in a polymeric structure by being branched, interdigitated, entangled and/or sharing common walls, and the fractured carbon nanotubes are derived from the carbon nanostructures and are branched and share common walls with one another. A Brookfield viscosity of the dispersion measured at room temperature at 10 rpm is less than 3000 cP.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: February 27, 2024
    Assignee: Cabot Corporation
    Inventors: Zhangliang Gui, Jin-nan Liu, Shi-Lin Wang
  • Patent number: 11917802
    Abstract: Thermoplastic compounds in the form of a pellet include thermoplastic resin and conductive fibers. The conductive fibers are enveloped by the thermoplastic resin and distributed within the pellet such that each of at least a portion of the conductive fibers is substantially surrounded by the thermoplastic resin and thereby substantially separated from physical contact with any other of the conductive fibers. Additionally, at least a portion of the conductive fibers includes long fibers. The thermoplastic compound, when molded at a thickness of about 3.2 mm, has an electromagnetic shielding effectiveness across a range of frequencies from about 0.5 GHz to about 2.0 GHz of at least about 60 dB according to ASTM D4935, which makes the thermoplastic compound useful for molding thermoplastic articles for shielding against electromagnetic interference.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: February 27, 2024
    Assignee: Avient Corporation
    Inventors: Raul Juan, Javier Puyalto, Renlong Gao, David Sanchez
  • Patent number: 11891589
    Abstract: Fabric care compositions that include a graft copolymer, which may include (a) a polyalkylene oxide, such as polyethylene oxide (PEG); (b) N-vinylpyrrolidone (VP); and (c) a vinyl ester, such as vinyl acetate. Methods and uses relating to such compositions and/or graft copolymers.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: February 6, 2024
    Assignee: The Procter & Gamble Company
    Inventors: Renae Dianna Fossum, Lidiany Gonzalez, Elaine Marie Burt, Jan Ole Mueller, Dieter Hannu Boeckh, Dawid Marczewski
  • Patent number: 11891533
    Abstract: The present invention relates to a metal fine particle-containing ink containing metal fine particles (a) dispersed therein with a polymer B, in which the ink contains an ink solvent S; a difference ?SP (|SP(S)?SP(B)|) between solubility parameters of the solvent S and the polymer B is not more than 1.5 (cal/cm3)0.5 wherein SP(S) and SP(B) are a solubility parameter of the ink solvent S and a solubility parameter of the polymer B, respectively, as measured by a Fedors method; and the SP(B) is not less than 9.5 (cal/cm3)0.5 and not more than 10.5 (cal/cm3)0.5, as well as a method for producing a printed material, which includes the step of applying the metal fine particle-containing ink to a printing substrate to form a metal coating film of the ink on the printing substrate under ordinary-temperature environments, thereby obtaining the printed material.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: February 6, 2024
    Assignee: KAO CORPORATION
    Inventors: Tomohide Yoshida, Kosuke Muto
  • Patent number: 11887748
    Abstract: A connected structure including: a first circuit member having a first electrode; a second circuit member having a second electrode; and a connecting portion provided between the first circuit member and the second circuit member and electrically connecting the first electrode and the second electrode to each other, wherein at least one of the first electrode and the second electrode has a layer made of Cu or Ag as an outermost surface thereof, and the connecting portion contains a conductive particle having a layer made of Pd or Au as an outermost surface thereof.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: January 30, 2024
    Inventors: Tomoki Morijiri, Kengo Shinohara, Ayao Matsukawa
  • Patent number: 11862795
    Abstract: Process for modifying an electrode active material according to general formula Li1+xTM1?xO2, wherein TM contains a combination of Ni and at least one transition metal selected from Co and Mn, and, optionally, at least one metal selected from Al, Ba, and Mg and, optionally, one or more transition metals other than Ni, Co, and Mn, wherein at least 75 mole-% of TM is Ni, and x is in the range of from ?0.05 to 0.2, said process comprising the steps of (a) treating said Li1+xTM1?xO2 with an aqueous medium with a pH value of at least 5 and up to 14, (b) removing said aqueous medium from treated Li1+xTM1?xO2 by way of a solid-liquid separation, wherein steps (a) and (b) are commenced with a maximum time difference of 3 minutes. In addition, the present invention is directed towards Ni-rich electrode active materials.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: January 2, 2024
    Assignee: BASF SE
    Inventors: Christoph Erk, Thomas Letzelter, Markus Hoelzle, Carsten Sueling
  • Patent number: 11834586
    Abstract: Provided is a conductive paint that can be cured at a temperature of 110° C. or less and has both excellent conductivity and adhesiveness. The conductive paint includes, per 100 parts by mass of a binder component (A) containing an epoxy resin, 1,000 to 4,000 parts by mass of metal particles (B), 50 to 150 parts by mass of a blocked isocyanate curing agent (C), and 200 to 1,500 parts by mass of a solvent (D).
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: December 5, 2023
    Assignee: TATSUTA ELECTRIC WIRE & CABLE CO., LTD.
    Inventors: Hajime Nakazono, Masamichi Nisogi
  • Patent number: 11834554
    Abstract: An object of the present invention is to provide a conductive silicone composition that is cured at a low temperature in a short time and from which a cured product having excellent conductivity can be obtained. A conductive silicone composition containing (A) to (E) components described below and containing greater than or equal to 10 parts by mass and less than 100 parts by mass of the (D) component with respect to 100 parts by mass of the (A) component: (A) component: a polyorganosiloxane having one or more alkenyl groups in a molecule (B) component: a compound having a hydrosilyl group (C) component: a hydrosilylation catalyst (D) component: a silane compound having an epoxy group and an alkoxysilyl group (E) component: a conductive powder.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: December 5, 2023
    Assignee: THREEBOND CO., LTD.
    Inventors: Satoru Endo, Hitoshi Mafune, Takashi Suzuki
  • Patent number: 11837377
    Abstract: The electrically conductive composition includes an electrical conductive polymer, a binder resin, and at least one of a cross-linking agent and a plasticizer.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: December 5, 2023
    Assignee: NITTO DENKO CORPORATION
    Inventors: Eiji Toyoda, Naoya Sugimoto, Ryoma Yoshioka
  • Patent number: 11820892
    Abstract: A polymer composition that is capable of exhibiting a unique combination of ductility (e.g., tensile elongation at break), impact strength (e.g., Charpy notched impact strength), and dimensional stability is provided. For example, the polymer composition may contain a liquid crystalline polymer in combination with an epoxy-functionalized olefin copolymer and an inorganic particulate material.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: November 21, 2023
    Assignee: Ticona LLC
    Inventor: Young Shin Kim
  • Patent number: 11820916
    Abstract: A composite article includes a lightning strike protection coating on a composite substrate. The lightning strike protection coating is formed from electrically conductive material and includes protrusions spaced along the length and width of a portion of the substrate surface. To form the lightning strike protection coating, a form is pressed against electrically conductive coating material on the composite substrate while the electrically conductive coating material is flowable. For example, the form can be a release film used in a composite vacuum bagging process. Suitable release film can have depressions along an inner surface that define an imprint of the coating protrusions. After curing, the coating can be covered with a layer of paint that conceals the protrusions but still allows lightning streamers to penetrate the paint at the protrusions.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: November 21, 2023
    Assignee: WICHITA STATE UNIVERSITY
    Inventor: Clay Parten
  • Patent number: 11814545
    Abstract: A conductive polymer dispersion of this disclosure includes: a conductive composite containing a ?-conjugated conductive polymer and a polyanion; an isocyanurate-based compound; and a dispersion medium for dispersing the conductive composite.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: November 14, 2023
    Assignee: Shin-Etsu Polymer Co., Ltd.
    Inventor: Sou Matsubayashi
  • Patent number: 11810688
    Abstract: Electrically conductive nanocomposite particles including a core of a C1-C6 alkyl polyacrylate homopolymer or a copolymer of C1-C6 alkyl acrylate and of an ?,?-unsaturated amide comonomer, a shell of polyaniline, and a non-ionic surfactant, for printing on a stretchable substrate. Also, a printed stretchable substrate obtained from the electrically conductive nanocomposite particles, which is usable, for example, in the field of printed electronics or connected clothing.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: November 7, 2023
    Assignees: UNIVERSITE DE PAU ET DES PAYS DE L'ADOUR, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Stéphanie Reynaud, Pierre Marcasuzaa
  • Patent number: 11802253
    Abstract: Compositions, systems and methods for introducing lubricants, and additives, that are designed to work with environmentally friendly refrigerants into vehicle heat management systems including passenger compartment air conditioning (A/C) systems are disclosed. Methods for charging lubricants and specific additives using environmentally desirable (low GWP) refrigerant or refrigerant blend compositions into an environmentally friendly system, such as a system that uses HFO-1234yf, are also disclosed.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: October 31, 2023
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Mary E. Koban, Nina E. Gray, Hubert Mentz, Jr.
  • Patent number: 11781022
    Abstract: An anti-corrosive coating composition is disclosed. The anti-corrosive coating composition includes a binder, an electrically conducting polymer, one or more fillers, and a crosslinker. The electrically conductive polymer may include polyaniline, poly(3,4-ethylenedioxythiophene), polypyrrole, or an additive, such as a biopolymer grafted thereto. A method for making an anti-corrosive coating composition is also disclosed.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: October 10, 2023
    Assignee: THE BOEING COMPANY
    Inventors: Kamaraj Kandhasamy, Kishora Shetty
  • Patent number: 11783958
    Abstract: The conductive wiring material composition includes (A) a polymer compound having a repeating unit “a” which has a structure selected from an ammonium salt, a lithium salt, a sodium salt, a potassium salt and a silver salt of any of fluorosulfonic acid, fluorosulfonimide and fluorosulfonamide and (B) metal powder, wherein the component (B) is contained with an amount exceeding 50 parts by mass based on 100 parts by mass of a solid content of the conductive wiring material composition excluding the component (B).
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: October 10, 2023
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Jun Hatakeyama, Koji Hasegawa, Osamu Watanabe