Patents Examined by Jaison P Thomas
  • Patent number: 11149161
    Abstract: A metal ink containing metal particles including silver, a protective agent A including an amine compound, and a protective agent B including a fatty acid. The metal ink is configured such that the protective agent A includes at least one C4-12 amine compound, and the protective agent B includes at least one C22-26 fatty acid. It is preferable that the amine compound content is 0.2 mmol/g or more and 1.5 mmol/g or less on a silver particle mass basis. In addition, it is preferable that the fatty acid content is 0.01 mmol/g or more and 0.06 mmol/g or less on a silver particle mass basis.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: October 19, 2021
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Yuusuke Ohshima, Yuichi Makita, Teruhisa Iwai, Hitoshi Kubo, Shigeki Yamanaka, Masahiro Ito, Shingo Watanabe
  • Patent number: 11136424
    Abstract: Disclosed are a method for a preparing fluorine- and chlorine-containing conductive polymer resin, a single-side or double-side filled composite film prepared using the fluorine- and chlorine-containing conductive polymer resin, and a method for preparing the film. The fluorine- and chlorine-containing conductive polymer single-side or double-side filled composite film comprises a microporous film skeleton and the fluorine- and a chlorine-containing conductive polymer resin. The composite film is mechanically stronger, more waterproof, more impervious to water and toxic and harmful chemicals, and more moisture permeability. When applied to biochemical protective clothing, it can greatly enhance the combat effectiveness of the soldiers because it is light and more impervious to water and toxic and harmful chemicals, brings about comfort, and keeps the soldiers warm.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: October 5, 2021
    Assignee: Zhejiang Hyproof Technology Co., Ltd.
    Inventors: Huisheng Wu, Ying Yang
  • Patent number: 11133504
    Abstract: A nickel complex oxide having a carbon content of 0.15% by mass or lower.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: September 28, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Kawakami, Tomomichi Nihei
  • Patent number: 11104037
    Abstract: The present invention relates to a method for preparing high performance polymer-based conductive composites by space-limited micro-nano precision assembly method, which belongs to the technical field of composite material preparation; including the following steps: (1) through blending the conductive filler and the polymer matrix which are added to the blending equipment, homogeneous polymer/conductive filler material system is obtained; (2) add the homogeneous material system to the mold composed of two flat plates, and let the homogeneous blend gets plane limited compression by means of mechanical compression; (3) making use of the micro-nano structure array set on the compression template to further compact the filler on the network and conducting “array anchorage”, to realize the micro-nano precision assembly of network and obtain the composite material with excellent performance, which has a continuous and tight conductive network, and has excellent tensile properties, flexibility and thermal stability.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: August 31, 2021
    Inventors: Darning Wu, Xiaolong Gao, Ying Liu, Xiuting Zheng, Yao Huang, Hong Xu, Jingyao Sun, Zhongli Zhao
  • Patent number: 11107601
    Abstract: The invention provides an elastic conductor which is excellent in stretchability and hardly causes a decrease in conductivity even when stretched. The elastic conductor includes an elastomer and two types of conductive particles, wherein the two types of conductive particles are flake-like particles and nanoparticles, and the conductive particles are dispersed throughout the elastomer.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: August 31, 2021
    Assignee: Japan Science and Technology Agency
    Inventors: Naoji Matsuhisa, Takao Someya, Daishi Inoue
  • Patent number: 11108037
    Abstract: Provided is a method for preparing a graphene/ternary material composite for use in lithium ion batteries, comprising the following preparation steps: (a) mixing a ternary material and a graphene oxide powder in an organic solvent to form a mixed dispersion; (b) adding a reducing agent to the mixed dispersion from step (a), and carrying out a reduction reaction at a reduction temperature of 80-160° C. while stirring, to obtain a reduction reaction mixture after a reduction time of 60-240 min; and (c) evaporating the solvent from the reduction reaction mixture from step (b) while stirring, and drying and then annealing the mixture at a low temperature in an inert atmosphere to obtain a graphene/ternary material composite having a three-dimensional network structure. Also provided is a graphene/ternary material composite prepared by using this method.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: August 31, 2021
    Assignees: BEIJING TUNGHSU CARBON ADVANCED MATERIALS TECHNOLOGY CO., LTD., TUNGHSU GROUP CO., LTD.
    Inventors: Qing Li, Min Chen, Heran Li
  • Patent number: 11098416
    Abstract: A Group VB element doped with a ?-gallium oxide crystalline material, and a preparation method and application thereof. The series doped with the ?—Ga2O3 crystalline material is monoclinic, the space group is C2/m, the resistivity is in the range of 2.0×10?4 to 1×104?·cm, and/or the carrier concentration is in the range of 5×1012 to 7×1020/cm3. The preparation method comprises steps of: mixing M2O5 and Ga2O3 with a purity of 4N or more at molar ratio of (0.000000001-0.01):(0.999999999-0.99); an then performing crystal growth. The present invention can prepare a high-conductivity ?-Ga2O3 crystalline material with n-type conductivity characteristics by conventional processes, providing a basis for applications thereof to electrically powered electronic devices, optoelectronic devices, photocatalysts or conductive substrates.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: August 24, 2021
    Assignee: Shanghai Institute of Optics And Fine Mechanics, Chinese Academy of Sciences
    Inventors: Changtai Xia, Qinglin Sai, Wei Zhou, Hongji Ql
  • Patent number: 11094427
    Abstract: Electrical field grading material which comprises a non-polar elastomeric polymer, a phyllosilicate filler and a carbon black filler, wherein any carbon black filler present in the electric field grading material has a dibutyl phthalate (DBP) absorption number from 30 to 80 ml/100 g. The above material may be used in electrical cable accessories, particularly electrical cable joints or terminations for medium or high voltage cable. The electrical field grading material according to the present invention has varioresistive properties, particularly a significant variation of electrical conductivity as a function of the applied voltage within a reduced voltage range, so as to guarantee a high value of conductivity above a critical value of the electrical field, and therefore to ensure an even distribution of the electrical field lines within the material.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: August 17, 2021
    Assignee: PRYSMIAN S.p.A.
    Inventors: Luigi Caimi, Stefano Pogliani, Ivan Troia
  • Patent number: 11084726
    Abstract: Provided is a graphene additive, having a viscosity between 1000 and 40000 cps and a grind fineness not greater than 15 ?m, and comprising: nano-graphene sheets and a silane coupling agent, wherein a weight ratio of the nano-graphene sheets to the silane coupling agent is 0.1-15:99.9-85, and carbon atoms on a surface of the nano-graphene sheets form chemical bonds Si—O—C with oxygen substituents of the silane coupling agent. The present application further provides a method of preparing the graphene additive.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: August 10, 2021
    Assignee: ENERAGE INC.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Geng Wei Lin
  • Patent number: 11078595
    Abstract: Provided is a method of producing a high resistance n-type silicon single crystal ingot with small tolerance margin on resistivity in the crystal growth direction, which is suitably used in a power device. In the method of producing a silicon single crystal ingot using Sb or As as an n-type dopant, while a silicon single crystal ingot is pulled up, the amount of the n-type dopant being evaporated from a silicon melt per unit solidification ratio is kept within a target evaporation amount range per unit solidification ratio by controlling one or more pulling condition values including at least one of the pressure in a chamber, the flow volume of Ar gas, and a gap between a guide portion and the silicon melt.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 3, 2021
    Assignee: SUMCO CORPORATION
    Inventors: Masataka Hourai, Wataru Sugimura, Toshiaki Ono, Toshiyuki Fujiwara
  • Patent number: 11034811
    Abstract: Provided are resin composition and a molded article produced therefrom, the resin composition comprising: a polycarbonate resin; a rubber-modified aromatic vinyl-based copolymer resin; a conductive additive including a carbon fiber and a carbon nanotube; talc; and a foaming agent, wherein the carbon fiber and the carbon nanotube are contained in a weight ratio of 1:0.1 to 1:0.4.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: June 15, 2021
    Assignee: Lotte Advanced Materials Co., Ltd.
    Inventors: Kihong Choi, Taegon Kang, Seungshik Shin, Dongin Ha
  • Patent number: 11031585
    Abstract: To provide: coated nickel-based lithium-nickel composite oxide particles which are able to be handled in the atmosphere and enable the achievement of a coating film of a lithium ion conductor having no adverse effects on battery characteristics; and a method for producing the coated nickel-based lithium-nickel composite oxide particles.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: June 8, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventor: Yosuke Ota
  • Patent number: 11028351
    Abstract: A unit dose pack and methods for producing and using the same are provided. In accordance with one embodiment, a unit dose pack includes a container that includes a film. A wash composition is encapsulated within the container, where the wash composition includes an ionic detergent surfactant. The wash composition also includes a neutralizer that includes a metal hydroxide and triethanol amine.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: June 8, 2021
    Assignee: Henkel IP & Holding GmbH
    Inventors: Daniel T. Piorkowski, Casey Camire
  • Patent number: 10978642
    Abstract: A mixture consists of three or more organic compounds, wherein the molecular weight difference of any two organic compounds is less than 160 Dalton. In the mixture, the molar percentage of each organic compound is not less than 3% and not more than 90%, and the organic compounds all have at least one same or similar photoelectronic function.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: April 13, 2021
    Assignee: GUANGZHOU CHINARAY OPTOELECTRONIC MATERIALS LTD.
    Inventors: Junyou Pan, Jiahui Tan
  • Patent number: 10968326
    Abstract: Minimum Federal Safety Standards for corrosion control on buried oil & gas pipelines stipulate that metallic pipes should be properly coated and have impressed-current cathodic protection (ICCP) systems in place to control the electrical potential field around a protected pipe. In certain examples described herein, electrically-conductive composites can be used and provide intrinsically-safe materials without the dielectric shielding issues of existing materials used with pipelines. As reacted by customary spray applications, the nanocomposite foams described herein are directly compatible with ICCP functionality wherever foam contacts the metallic pipe. Various compositions and their use with underground and/or above ground pipelines are described.
    Type: Grant
    Filed: April 14, 2019
    Date of Patent: April 6, 2021
    Assignee: Phillips Intellectual Properties, LLC
    Inventor: Alan D Phillips
  • Patent number: 10966656
    Abstract: An electric conductive fiber structure includes an electric conductive resin containing electric conductive polymer(s), the electric conductive resin being filled in gaps between single fibers included in a fiber structure, the electric conductive fiber structure having 15% or more area ratio of the electric conductive resin present in an area of 15 to 30 ?m from a surface when a cross section in a thickness direction of the fiber structure is observed.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: April 6, 2021
    Assignees: Toray Industries, Inc., Nagase ChemteX Corporation
    Inventors: Noriko Nagai, Keiji Takeda, Jun Kawakami, Hiroshi Nagata, Tatsuya Ohori
  • Patent number: 10971281
    Abstract: A polymer matrix composite containing graphene sheets homogeneously dispersed in a polymer matrix wherein the polymer matrix composite exhibits a percolation threshold from 0.0001% to 0.1% by volume of graphene sheets to form a 3D network of interconnected graphene sheets or network of electron-conducting pathways.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: April 6, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Yi-jun Lin, Bor Z. Jang
  • Patent number: 10964441
    Abstract: Conductive particles, articles including such particles, and methods of making such conductive particles, are provided; wherein the conductive particles include: a core particle including at least one of a glass, a glass-ceramic, or a metal; surface particles adhered to the core particle; and a metal coating disposed on at least a portion of the core and surface particles; wherein the core particle is larger than the surface particles.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: March 30, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Craig W. Lindsay, Kenton D. Budd, Dipankar Ghosh, Noah O. Shanti
  • Patent number: 10954184
    Abstract: The present invention provides compounds of formula (I): wherein W is independently selected from the group consisting of H, F, Cl, Br and I; 10 X is independently selected from the group consisting of H, F, Cl, Br, I, CW3 and OR on the basis that at least one X is OR; R is independently selected from the group consisting of C(O) (CH2)m(CF2)nY and CW2C(CW2OC(O)(CH2)m(CF2)nY)3; m is an integer from 0 to 2; 15 n is an integer from 2 to 8; Y is C(Z)3; and Z is independently selected from the group consisting of H, F, Cl, Br and I. Such compounds may be utilised as lubricants, for example in heat transfer compositions.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: March 23, 2021
    Assignee: MEXICHEM FLUOR S.A. DE C.V.
    Inventors: Robert Elliot Low, Andrew Paul Sharratt, Emma Jane Hodgson
  • Patent number: 10894723
    Abstract: Provided is a cobalt precursor for preparing a lithium cobalt oxide of a layered structure which is included in a positive electrode active material, wherein the cobalt precursor is cobalt oxyhydroxide (CoM?OOH) doped with, as dopants, magnesium (Mg) and M? different from the magnesium.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: January 19, 2021
    Inventors: Chi Ho Jo, Sungbin Park, Jiyoung Park, Bo Ram Lee, Hyuck Hur, Wang Mo Jung