Patents Examined by Jan M. Ludlow
  • Patent number: 7767462
    Abstract: An acid or base is generated in an aqueous solution by the steps of: (a) providing a source of first ions adjacent an aqueous liquid in a first acid or base generation zone, separated by a first barrier (e.g., anion exchange membrane) substantially preventing liquid flow and transporting ions only of the same charge as said first ions, (b) providing a source of second ions of opposite charge adjacent an aqueous liquid in a second acid or base generation zone, separated by a second barrier transporting ions only of the same charge as the second ions, and (c) transporting ions across the first barrier by applying an electrical potential through said first and second zones to generate an acid-containing aqueous solution in one of said first or second zones and a base-containing aqueous solution in the other one which may be combined to form a salt. Also, electrolytic apparatus for performing the above method.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: August 3, 2010
    Assignee: Dionex Corporation
    Inventors: Yan Liu, Nebojsa Avdalovic
  • Patent number: 7749448
    Abstract: Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: July 6, 2010
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Thomas Hantschel, David K. Fork, Eugene M. Chow, Dirk De Bruyker, Michel A. Rosa
  • Patent number: 7736906
    Abstract: A method and device for forming large arrays of polymers on a substrate (401). According to a preferred aspect of the invention, the substrate is contacted by a channel block (407) having channels (409) therein. Selected reagents are delivered through the channels, the substrate is rotated by a rotating stage (403), and the process is repeated to form arrays of polymers on the substrate. The method may be combined with light-directed methodologies.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: June 15, 2010
    Assignee: Affymetrix, Inc.
    Inventors: James L. Winkler, Stephen P. A. Fodor, Christopher J. Buchko, Debra A. Ross, Lois Aldwin, Douglas N. Modlin
  • Patent number: 7731908
    Abstract: A pipette, comprising a pipette casing which has disposed therein a seat, a piston seat in an accommodating body, mounting devices for reversibly fixing the mounting portion and syringe piston of a syringe within the seats and piston adjusting devices for displacing the accommodating body, wherein the mounting portion and syringe piston are adapted to be slid to their mounting positions through axial apertures, the mounting devices have radially advanceable gripping devices, the gripping devices have syringe gripping levers pivotally supported within the pipette casing and piston gripping levers pivotally supported within the accommodating body, the syringe gripping levers and piston gripping levers have two arms, the syringe gripping levers, at the insides of their actuator arms, having contact points which when their actuator arms are actuated are adapted to be externally pivoted against the actuator arms of the piston gripping levers, the syringe gripping levers have inwardly projecting release levers on t
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: June 8, 2010
    Assignee: Eppendorf AG
    Inventor: Jurgen Lenz
  • Patent number: 7727476
    Abstract: A device for aspirating and dispensing liquid samples comprising a pump that comprises a cylindrical chamber, a piston movable in this cylindrical chamber, and a piston drive that engages the piston. The device further comprises a tip connected to the cylindrical chamber with a line, and a channel system that discharges into the cylindrical chamber for flushing or rinsing the latter. The device is characterized in that the piston entirely seals this cylindrical chamber from the channel system, if the piston is positioned in the cylindrical chamber in such a way that a free piston end comes to rest between the channel system and the line. Preferably, the cylindrical chamber is located in a cylinder block, which comprises two parts that are separated by and enclosing an intermediate channel system. The channel system most preferably is implemented as a coherent cavity. According to a first embodiment, the cylindrical chamber is implemented as a sleeve that is inserted in a boring located in a cylinder block.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: June 1, 2010
    Assignee: Tecan Trading AG
    Inventors: Nikolaus Ingenhoven, Noa Schmid, Stefano Fornito
  • Patent number: 7709268
    Abstract: A positive displacement type substance sampling and dispensing device comprises a central plunger formed from a first material. A plunger housing is formed from a second material having a melting point lower than the first material, the housing being formed by molding and setting the second material on to the surface of the plunger so that the plunger can slide in the housing to draw a substance into it.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: May 4, 2010
    Assignee: TTP Labtech Limited
    Inventors: Thomas Richard Kerby Edwards, John Cassells, Nicholas Ian Mounteney, Gerald Avison
  • Patent number: 7704748
    Abstract: A novel Flame Temperature Analyzer (FTA) method and apparatus for measuring combustible gas concentration and oxygen content in a sample gas includes supplying a mixture of oxidant and fuel to a sensing flame and measuring the temperature of the flame as the sample is added to the combustion chamber.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: April 27, 2010
    Assignee: Control Instruments Corporation
    Inventors: Christopher G. Schaeffer, Matthew James Schaeffer, Pravin Patel
  • Patent number: 7691330
    Abstract: A method and device for forming large arrays of polymers on a substrate (401). According to a preferred aspect of the invention, the substrate is contacted by a channel block (407) having channels (409) therein. Selected reagents are delivered through the channels, the substrate is rotated by a rotating stage (403), and the process is repeated to form arrays of polymers on the substrate. The method may be combined with light-directed methodolgies.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: April 6, 2010
    Assignee: Affymetrix, Inc.
    Inventors: James L. Winkler, Stephen P. A. Fodor, Christopher J. Buchko, Debra A. Ross, Lois Aldwin, Douglas N. Modlin
  • Patent number: 7674631
    Abstract: A device for carrying out solid phase microextraction on-site is a tubular member having one closed end and one open end with an extracting surface within said tubular member. The extracting surface can be an extracting phase coating extending over a zone within the tubular member. The tubular member is mounted in a housing with an airtight cavity. A method of operation of the device is also provided. The solid phase microextraction device facilitates the ultimate goal of chemist to perform analysis on-site at place where a sample is located rather than moving the sample to laboratory, as it is a common practice in many cases at present. This approach eliminates errors and reduces the time associated with sample transport and storage and, therefore, it results in more accurate, precise and faster analytical data.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: March 9, 2010
    Inventor: Janusz B. Pawliszyn
  • Patent number: 7651866
    Abstract: A purge and trap concentrator has a sample processing system that includes a network of fluid passageways and fluid control devices. A flow controller couples to a purge gas inlet provides an electrically adjustable purge gas flow rate as a function of an electrical input. A digital controller provides the system cycle and provides the electrical input. The electrical input varies as a function of the system cycle to increase the rate of flow of purge gas during a bake step relative to the rate of flow of purge gas during a purge step in the system cycle.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: January 26, 2010
    Assignee: Teledyne Tekmar Company
    Inventor: Eric T. Heggs
  • Patent number: 7638339
    Abstract: A micro-fluidic device containing a micro-fluidic inlet channel to convey a process flow, a plurality of micro-fluidic focusing channels to each convey one of a plurality of focusing flows, a focusing manifold coupled with the inlet channel at an inlet port thereof and with the plurality of focusing channels at a plurality of focusing channel ports thereof to focus the process flow by contacting and hydrodynamically impacting at least three sides of the process flow with the focusing flows, and a micro-fluidic outlet channel coupled with the focusing manifold at an outlet channel port to convey the combined focused process flow and focusing flow from the focusing manifold.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: December 29, 2009
    Assignee: Intel Corporation
    Inventors: Narayanan Sundararajan, Andrew Berlin
  • Patent number: 7601543
    Abstract: This invention is a method and device for use with multi-dimensional chromatography that utilizes partial modulation. An analyte-bearing sample is subjected to a first dimension of chromatography. Thereafter the separated analyte-bearing sample is diluted with a modulated second carrier such at the analyte-bearing sample is not stopped or its temperature altered. The partially modulated analyte-bearing sample then feeds into a secondary column where the analyte-bearing sample is further separated.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: October 13, 2009
    Assignee: Valco Instruments Co., Inc.
    Inventors: Huamin Cai, Stanley Stearns
  • Patent number: 7524457
    Abstract: Apparatus for chromatographically separating ionic species in an aqueous electrolyte-containing eluent to form an effluent, suppressing the effluent, detecting the suppressed effluent and passing the detected effluent to a regenerant reservoir, thereby displacing the regenerant to flow to the suppressor.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: April 28, 2009
    Assignee: Dionex Corporation
    Inventors: Kannan Srinivasan, Christopher A. Pohl
  • Patent number: 7517696
    Abstract: A non-electrolytic method and apparatus for treating an aqueous sample stream including analyte ions and matrix ions of opposite charge, for pretreatment or suppression. The apparatus includes an ion exchange membrane capable of passing only ions of opposite charge to the analyte ions, a sample stream flow channel, a first aqueous stream ion receiving flow channel adjacent one side of the sample stream flow channel and separated therefrom by the first ion exchange membrane, and stationary flow-through ion exchange packing disposed in the sample stream flow channel. The ion receiving channel has an ion exchange capacity for the matrix ions less than about 25% of the ion exchange capacity for the matrix ions.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: April 14, 2009
    Assignee: Dionex Corporation
    Inventors: Kannan Srinivasan, Christopher A. Pohl
  • Patent number: 7507586
    Abstract: This invention is a method and device for use with multi-dimensional chromatography that utilizes partial modulation with multiple secondary retention times. An analyte-bearing sample is subjected to a first dimension of chromatography. Thereafter the separated analyte-bearing sample is diluted with a modulated second carrier such at the analyte-bearing sample is not stopped or its temperature altered. The secondary retention time period at which the modulator cycles is variable among multiple secondary retention time periods to prevent loss of resolution with less complex and/or low boiling point compounds and to prevent loss of data with more complex and/or higher boiling point compounds. The partially modulated analyte-bearing sample then feeds into a secondary column where the analyte-bearing sample is further separated.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: March 24, 2009
    Assignee: Valco Instruments Co., Inc.
    Inventor: Huamin Cai
  • Patent number: 7479256
    Abstract: A device for device for applying a plurality of microdroplets onto a substrate has a plurality of nozzle orifices in a dosing head. In addition to walls for defining a liquid column of a medium to be dosed on each nozzle orifice, a pressure chamber is provided, which is adapted to be filled with a buffer medium and which is arranged in such a way that said buffer medium can simultaneously be used for applying a pressure to the liquid-column ends which are spaced apart from the nozzle orifices. A pressure generator is provided for applying a pressure to said buffer medium in such a way that a plurality of microdroplets will simultaneously be applied onto the substrate through said plurality of nozzle orifices. Finally, liquid reservoirs for the media to be dosed, which are in fluid communication with the liquid columns on the nozzle orifices are provided.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: January 20, 2009
    Assignees: Hahn-Schickard-Gesellschaft Fuer Angewandte Forschung E.V.
    Inventors: Holger Gruhler, Nicolaus Hey, Hermann Sandmaier, Roland Zengerle
  • Patent number: 7470545
    Abstract: Equipment and method of use for in vitro buccal dissolution testing. The invention is particularly useful for evaluating the effect of taste-masking in oral dosage forms.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: December 30, 2008
    Assignee: Rohm and Haas Company
    Inventor: Lyn Hughes
  • Patent number: 7416700
    Abstract: A fluorometer for sensing the fluorescence of a sample utilizes an optical energy source for exciting a sample to be tested and an optical energy detector for detecting the emitted energy from the excited sample. Drive electronics are used for positioning the sample with respect to the optical components allowing a plurality of sample regions to be tested. A processor is utilized to control the operation of the test in accordance with test instructions and for processing the emitted energy detected from the sample to determine test results. A ROM chip socket accepts a plurality of ROM chips, wherein each ROM chip stores test data sets for one or more test types to be performed. ROM chips can be swapped to allow the fluorometer to be configured and reconfigured to perform a plurality of different tests. A communications interface facilitates the sharing of test information between the fluorometer and external entities.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: August 26, 2008
    Assignee: Biosite Incorporated
    Inventors: Kenneth F. Buechler, Joseph M Anderberg, Paul H. McPherson
  • Patent number: 7413711
    Abstract: A dispensing system delivers a precise amount of fluid for biological or chemical processing and/or analysis. Dispensing means moves the fluid. The dispensing means is operated by a pneumatic force. Connection means delivers the fluid to the desired location. An actuator means provides the pneumatic force to the dispensing means. Valving means transmits the pneumatic force from the actuator means to the dispensing means.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: August 19, 2008
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: William J. Benett, Peter A. Krulevitch, Steven R. Visuri, John M. Dzenitis, Kevin D. Ness
  • Patent number: 7404926
    Abstract: A method and system for treating a fluid containing entrained cementitious particles involves drawing the fluid from a storage location, pre-filtering the fluid, dividing the pre-filtered fluid into a flow of permeate and a flow of bypass by passing said pre-filtered fluid through a tangential flow filter. The permeate flow is fluid that has passed through a polymeric membrane filter media disposed in the tangential flow filter, while the bypass flow is flow exiting said tangential flow filter without passing through said membrane filter media. The system and method also includes a pH probe for testing the pH of the filtrate, and a metering pump operated by a controller which injects a neutralizing agent into the filtrate to reduce the alkalinity of the filtrate before discharge.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: July 29, 2008
    Inventor: Frank G. Rhoades