Patents Examined by Janice M Soto
  • Patent number: 10031030
    Abstract: A sensor configuration measures the temperature of a medium in a vehicle. The sensor configuration includes a sensor body and two connecting wires and is completely insulated from the medium. The sensor body is electrically and thermally insulated from the medium by a covering completely surrounding the sensor body and is in heat-conducting contact with the medium substantially through the connecting wires.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: July 24, 2018
    Assignee: Conti Temic microelectronic GmbH
    Inventors: Matthias Keuten, Andreas Voegerl, Juergen Henniger, Matthias Wieczorek, Lisa-Maria Wittmann
  • Patent number: 9978484
    Abstract: Provided are a metal nitride film for a thermistor, which has an excellent bending resistance and can be directly deposited on a film or the like without firing, a method for producing the same, and a film type thermistor sensor. The metal nitride film for a thermistor, which consists of a metal nitride represented by the general formula: TixAlyNz (where 0.70?y/(x+y)?0.95, 0.4?z?0.5, and x+y+z=1), wherein the crystal structure thereof is a hexagonal wurtzite-type single phase, and the peak ratio of the diffraction peak intensity of a-axis orientation (100) relative to the diffraction peak intensity of c-axis orientation (002) (i.e., the diffraction peak intensity of a-axis orientation (100)/the diffraction peak intensity of c-axis orientation (002)) is 0.1 or lower in X-ray diffraction.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: May 22, 2018
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hiroshi Tanaka, Toshiaki Fujita, Noriaki Nagatomo, Kazutaka Fujiwara, Hitoshi Inaba
  • Patent number: 9964504
    Abstract: The invention relates to a test system for cooling and/or heating at least one test piece comprising a platform, at least one heating and/or cooling fluid providing means coupled to the platform, at least one position means for reproducibly fixing the relative position of the fluid providing means to the at least one test piece and wherein the at least one position means is connected to the platform, the platform comprising at least one fastening means, in particular two openings for releasable coupling the fluid providing means for an at least temporarily fixing of the relative position of the fluid proving means to the test piece. It also relates to a test method.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: May 8, 2018
    Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventors: Stephan Peter Brookes, Barry Ward
  • Patent number: 9964451
    Abstract: Provided is a temperature sensor which does not easily cause a crack in a Ti—Al—N-based thermistor material layer when the film is bent, can be directly deposited on a film or the like without firing, and has a high reliability with a high heat resistance. The temperature sensor includes an insulating film 2, a thin film thermistor portion 3 made of a Ti—Al—N-based thermistor material formed on the insulating film, a pair of pattern electrodes 4 formed on the insulating film with a pair of opposed electrode portions 4a being arranged so as to be opposed to each other on the thin film thermistor portion, wherein the pair of opposed electrode portions covers the entire surface of thin film thermistor portion excluding the region between the opposed electrode portions.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: May 8, 2018
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hiroshi Tanaka, Hitoshi Inaba, Kazuta Takeshima, Noriaki Nagatomo
  • Patent number: 9945736
    Abstract: A method for estimating a temperature of a substrate includes generating plasma in a plasma processing system. The substrate is arranged on a substrate support structure in the plasma processing system. The plasma generates electromagnetic radiation that is incident upon a first surface of the substrate. The method further includes arranging a detector adjacent to a second surface of the substrate and in-situ the plasma processing system and measuring a signal intensity of electromagnetic radiation passing through the second surface of the substrate at N frequencies. The method includes selecting each of the N frequencies at which the signal intensity is measured by the detector to correspond to a phonon-generating frequency of a material in the substrate. The method includes converting the signal intensity at the N frequencies to N absorbance values and estimating a temperature of the substrate based on the N absorbance values.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: April 17, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventor: Enrico Magni
  • Patent number: 9945757
    Abstract: The invention relates to a device for measuring temperature in a gas duct. The device (1?) comprises a body (3?) for supporting a temperature sensor (4?), the sensor comprising a head (7?) and at least two wires (8?) connecting the head (7?) to means for acquiring a temperature-measurement signal. The supporting body (3?) is arranged so as to be inserted into an orifice of a wall of the duct in order to immerse the head (7?) of the sensor (4?) in the gases of the duct. The supporting body (3?) comprises a bottom collar (12?), having a top end surface (17a?), in which are arranged at least two channels (9?) for guiding and holding the wires (8?), arranged to allow the mounting of the sensor (4?) in the supporting body (3?) and the holding of the wires (8?) in order to hold the head (7?) of the sensor (4?) at a distance from the top end surface (17a?) of the collar (12?).
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 17, 2018
    Assignee: SC2N
    Inventor: Olivier Dixneuf
  • Patent number: 9945732
    Abstract: A temperature sensor has a thermosensitive element that detects temperature, a pair of element electrode wires electrically connected to the thermosensitive element, and a glass sealing body that has a sealing portion covering the thermosensitive element and a part of the element electrode wires. Further, the temperature sensor has a tablet that has an interface and a pair of insertion holes into which the element electrode wires are inserted, the tablet being joined to the glass sealing body through the interface. Further, the temperature sensor has a low Young's modulus layer provided in the glass sealing body, made of a material having lower low Young's modulus than that of a material forming the sealing portion, and at least partially connecting the sealing portion and the interface of the tablet.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: April 17, 2018
    Assignee: DENSO CORPORATION
    Inventors: Motoki Sato, Tsunenobu Hori
  • Patent number: 9933311
    Abstract: A blackbody radiometric reference comprising a source plate or a target plate, metallic nanoparticles or other high emissivity coating disposed on the plate, and an intermediate coating such as paint. The plate may comprise copper, aluminum or composites thereof. Apparatus capable of functioning as a radiometric or thermometric reference. A pre-heater or weakly-coupled area may be disposed around or adjacent a highly thermally uniform area. A groove or perforations extending into a front surface of the source plate defining a weakly-coupled edge portion surrounding a thermally-controlled, optically-active area, and connected by bridges or structures thereto. An external probe may be located near the source plate for measuring ambient temperature, for compensating for ambient temperature or for radiative load on the blackbody.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: April 3, 2018
    Assignee: Santa Barbara Infrared, Inc
    Inventors: Joseph D LaVeigne, Stephen W McHugh
  • Patent number: 9915961
    Abstract: A semiconductor device drive method achieves a balance between a lifetime and a detection sensitivity which are required for a temperature detection diode formed via an insulating film on a substrate on which an active element is formed. The semiconductor device drive method includes energizing the temperature detection diode with a constant current, the constant current having a current density value between an upper limit defined based on the lifetime of the temperature detection diode, and a lower defined based on a variation allowable voltage of an output voltage of the temperature detection diode with respect to a standard deviation.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: March 13, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Toshiyuki Matsui, Hitoshi Abe, Noriaki Yao
  • Patent number: 9883084
    Abstract: A handheld thermal imager includes a housing defining a cavity. A lens barrel has a first end portion and a second end portion. The lens barrel is at least partially disposed within the cavity. A lens is coupled to the lens barrel first end portion. A resilient buffer member supports the lens barrel within the cavity. A thermal sensor is coupled to the lens barrel second end portion. A processing module receives signals from the thermal sensor. A display is coupled to the processing module for displaying a temperature characteristic of a scene.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: January 30, 2018
    Assignee: MILWAUKEE ELECTRIC TOOL CORPORATION
    Inventors: Evans H. Nguyen, Roger D. Neitzell
  • Patent number: 9880035
    Abstract: Systems and methods for detecting coking in a wash bed of a vacuum pipe still with a sensing cable including an optical fiber sensor array aligned with a heating element disposed in the vessel. An optical signal interrogator is configured to measure a first temperature profile at a plurality of sensor locations to determine a flow distribution. An excitation source is configured to propagate at least one heat pulse through the heating element and the optical signal interrogator is configured to measure a second temperature profile corresponding to the heat pulse at the sensor locations. A control unit is configured to detect coking by determining one or more properties of the media exposed to the sensing cable at each of the plurality of sensor locations based on the second temperature profile corresponding thereto.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: January 30, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Yibing Zhang, Limin Song, Geoff Keiser, Michael Louis Hergenrother, Berne K. Stober, Patricia H. Kalamaras, Benjamin Santiago Umansky
  • Patent number: 9851263
    Abstract: A portable heating chamber system is adapted and configured for use in performing pyrometric proficiency testing. Within an enclosing structure is an array of thermocouples which function as temperature sensors. Heat is generated within the chamber by one or more electric resistive heat sources, and heated air is circulated by one or more electric fans. Outside the enclosing structure are a temperature controller and a data acquisition device, which applies correction factors to the temperature data and determines uncertainties to assess testing proficiency.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: December 26, 2017
    Inventor: Stephen Bugglin
  • Patent number: 9829392
    Abstract: The present disclosure relates to an apparatus and method for estimating a temperature of a motor using a Hall sensor. The method includes detecting, at a digital Hall sensor, a position of a rotor included in a motor and outputting an on signal in an operating period and an off signal in a release period according to a relative position of the rotor, calculating, at a temperature determining module, a difference between duration of the operating period and duration of the release period according to an output waveform of the digital Hall sensor, and then determining, at the temperature determining module, a temperature of the motor with reference to a temperature corresponding to the duration difference. Accordingly, it is possible to estimate the internal temperature of a motor without installing a temperature sensor in the motor, to maintain a small size of the motor, and to reduce production costs.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: November 28, 2017
    Assignee: KOREA ELECTRONICS TECHNOLOGY INSTITUTE
    Inventors: Joon Sung Park, Se Hyun Rhyu, In Soung Jung, Jun Hyuk Choi, Bon Gwan Gu, Jin Hong Kim
  • Patent number: 9816868
    Abstract: The present invention pertains to a device for measuring a temperature distribution, which can measure a temperature distribution without contacting a minor sample having a three-dimensional structure. More particularly, the device for measuring the temperature distribution can measure a three-dimensional temperature distribution for a sample, wherein the temperature distribution in a depth direction (direction z) of the sample is measured by a thermo-reflectance technique using a chromatic dispersion lens, a diffraction spectrometer and an optical detection array; and the temperature distribution in parallel directions (direction x-y axes) of the sample is measured by the thermo-reflectance technique using a biaxial scanning mirror.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: November 14, 2017
    Assignee: Korea Basic Science Institute
    Inventors: Ki Soo Chang, Hae Young Choi, Seon Young Ryu, Geon Hee Kim, Sun Cheol Yang
  • Patent number: 9810584
    Abstract: A temperature sensor includes two branches, each branch having at least a first transistor and a second transistor connected as diodes and cascaded, so that an emitter of the first transistor is connected to a collector of the second transistor of the same branch. The temperature source also includes a current source configured to provide a current to the two branches, and an analog-to-digital convertor. The analog-to-digital convertor is connected to capture a voltage between emitters of the first transistors or of the second transistors, and is configured to convert said voltage to a digital temperature signal.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: November 7, 2017
    Assignee: OPTIS CIRCUIT TECHNOLOGY, LLC
    Inventors: Jukka Kohola, Marko Pessa
  • Patent number: 9791328
    Abstract: A waterproof food temperature probe includes a penetrating portion for inserting into food during cooking; a cable for coupling the penetrating portion to a display unit separated from the penetrating portion; and, a high temperature resistant seal portion permanently covering at least part of the penetrating portion and at least part of the cable. The seal portion prevents moisture from entering the penetrating portion thereby preventing the temperature probe from malfunctioning.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: October 17, 2017
    Assignee: EWIG INDUSTRIES MACAO COMMERCIAL OFFSHORE LTD
    Inventor: Luk Wah Jackson Chu
  • Patent number: 9778115
    Abstract: Systems and methods for detecting a deposit in a vessel with a sensing cable including an optical fiber sensor array aligned with a heating element disposed in the vessel. An excitation source is configured to propagate at least one heat pulse through the heating element along at least a portion of the sensing cable to affect an exchange of thermal energy between the heating element and media exposed to the sensing cable. An optical signal interrogator is adapted to receive a signal from a plurality of sensor locations and configured to measure, a temperature profile corresponding to the heat pulse at the sensor locations. A control unit is configured to detect a deposit by determining one or more properties of the one or more media exposed to the sensing cable at each of the plurality of sensor locations based on the temperature profile corresponding thereto.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: October 3, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Yibing Zhang, Limin Song, Geoff Keiser, Michael Louis Hergenrother, Berne K. Stober, Patricia H. Kalamaras
  • Patent number: 9766221
    Abstract: A mobile calorimeter includes a container comprising one or more walls defining a cavity. The container is adapted to hold a concrete mixture within the cavity. The mobile calorimeter also includes one or more heat flow sensors adapted to detect a heat flow generated by the concrete mixture. The heat flow sensors may include a thermoelectric device, a Peltier plate, or a macro fiber composite (MFC) sensor. The one or more heat flow sensors may be attached to the one or more walls, or may be embedded within the one or more walls. Data relating to a heat flow is obtained by the heat flow sensors, and is used to generate a prediction of a characteristic or performance of the concrete mixture.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: September 19, 2017
    Assignee: QUIPIP, LLC
    Inventor: Farrokh F. Radjy
  • Patent number: 9759609
    Abstract: An inexpensive thermopile temperature detector is particularly adapted to monitoring of electrical equipment, such as a power bus bar, within an enclosed area such as a cabinet. The detector may have a plastic housing, a thermopile sensor and a plastic Fresnel lens. Each sensor also includes a calibrated element such that, but for calibration, the same sensor may be used for various applications for different target sizes and distance or, more generally, with respect to effective target percentage of field of view.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: September 12, 2017
    Assignee: Exergen Corporation
    Inventor: Francesco Pompei
  • Patent number: 9736962
    Abstract: A temperature-forcing system and method for controlling the temperature of an electronic device under test comprises a temperature-forcing head, including a face positionable in thermal contact with the device, and an evaporator, in direct or indirect thermal contact with the face; and a refrigerant circulation subsystem, including a compressor, a condenser, a flow control device for inducing a pressure drop in the refrigerant, and a conduit circuit through which the refrigerant is flowable. The subsystem cooperates with the evaporator so as to define at least one closed loop through which a corresponding bi-phase refrigerant is circulatable, so that, during circulation, the refrigerant is maintained in a liquid phase between the compressor and the flow control device and in a gaseous phase while flowing through the evaporator. The temperature of the device is therefore switchable by the head at a rapid rate of 50 to 150 degrees Celsius per minute.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: August 15, 2017
    Assignees: M.D. Mechanical Devices Ltd.
    Inventors: Lior Yosef, Eyal Simhon