Patents Examined by Jarrett Stark
  • Patent number: 10074609
    Abstract: A first interconnect on an interconnect level connects a first subset of PMOS drains together of a CMOS device. A second interconnect on the interconnect level connects a second subset of the PMOS drains together. The second subset of the PMOS drains is different than the first subset of the PMOS drains. The first interconnect and the second interconnect are disconnected on the interconnect level. A third interconnect on the interconnect level connects a first subset of NMOS drains together of the CMOS device. A fourth interconnect on the interconnect level connects a second subset of the NMOS drains together. The second subset of the NMOS drains is different than the first subset of the NMOS drains. The third interconnect and the fourth interconnect are disconnected on the interconnect level. The first, second, third, and fourth interconnects are coupled together though at least one other interconnect level.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: September 11, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Seid Hadi Rasouli, Animesh Datta, Ohsang Kwon
  • Patent number: 10074656
    Abstract: A manufacturing method of a semiconductor memory device includes following steps. Bit line structures and storage node contacts are formed on a semiconductor substrate. A first sidewall spacer is formed on sidewalls of each bit line structure. A conductive layer covering the bit line structures, the first sidewall spacer, and the storage node contacts is formed. A first patterning process is preformed to the conductive layer for forming stripe contact structures. Each stripe contact structure is elongated in the first direction and corresponding to the storage node contacts. The first sidewall spacer at a first side of each bit line structure is exposed by the first patterning process. The first sidewall spacer at a second side of each bit line structure is covered by the stripe contact structures. The first sidewall spacer exposed by the first patterning process is removed for forming first air spacers.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: September 11, 2018
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Ying-Chiao Wang, Li-Wei Feng, Chien-Ting Ho, Wen-Chieh Lu, Li-Wei Liu
  • Patent number: 10068977
    Abstract: A power MOSFET IC device including an array of MOSFET cells formed in a semiconductor substrate. The array of MOSFET cells comprises an interior region of interior MOSFET cells and an outer edge region of peripheral MOSFET cells, each interior MOSFET cell of the interior region of the array comprising a pair of interior MOSFET devices coupled to each other at a common drain contact. In an example embodiment, each interior MOSFET device includes a source contact (SCT) trench extended into a substrate contact region of the semiconductor substrate. The SCT trench is provided with a length less than a linear portion of a polysilicon gate of the interior MOSFET device, wherein the SCT trench is aligned to the polysilicon gate having a curvilinear layout geometry.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: September 4, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Furen Lin, Frank Baiocchi, Haian Lin, Yunlong Liu, Lark Liu, Wei Song, ZiQiang Zhao
  • Patent number: 10068866
    Abstract: An integrated circuit (IC) packaging arrangement for surface mounting of the IC includes a package body that encapsulates one or more IC dies. The package body according to some embodiments has rectangular aspect ratio with a length dimension and a width dimension of different size. The IC packaging according to some embodiments includes leadless surface-mount electrical contacts. According to some embodiments, the leadless surface-mount contacts are situated in clusters at opposite ends of the length dimension of the IC body.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: September 4, 2018
    Assignee: Intel Corporation
    Inventors: Scot A Kellar, Darren S Crews
  • Patent number: 10069038
    Abstract: Provided are a substrate having concave-convex patterns, a light-emitting diode (LED) including the substrate, and a method of fabricating the LED. The LED includes a substrate, and concave-convex patterns disposed in an upper surface of the substrate and having convexes and concaves defined by the convexes. Unit light-emitting device having a first conductive semiconduct or layer, an active layer, and a second conductive semiconductor layer disposed on the substrate in sequence is present.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: September 4, 2018
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Jae Kwon Kim, Sum Geun Lee, Kyung Wan Kim, Yeo Jin Yoon, Duk Il Suh, Ji Hye Kim
  • Patent number: 10062667
    Abstract: Stacked microfeature devices and associated methods of manufacture are disclosed. A package in accordance with one embodiment includes first and second microfeature devices having corresponding first and second bond pad surfaces that face toward each other. First bond pads can be positioned at least proximate to the first bond pad surface and second bond pads can be positioned at least proximate to the second bond pad surface. A package connection site can provide electrical communication between the first microfeature device and components external to the package. A wirebond can be coupled between at least one of the first bond pads and the package connection site, and an electrically conductive link can be coupled between the first microfeature device and at least one of the second bond pads of the second microfeature device. Accordingly, the first microfeature device can form a portion of an electrical link to the second microfeature device.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 28, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Mung Suan Heng, Kok Chua Tan, Vince Chan Seng Leong, Mark S. Johnson
  • Patent number: 10056368
    Abstract: A diode includes a plurality of fins defined in a semiconductor substrate. An anode region is defined by a doped region in a first surface portion of each of the plurality of fins and in a second surface portion of the semiconductor substrate disposed between adjacent fins in the plurality of fins. The doped region includes a first dopant having a first conductivity type and is contiguous between the adjacent fins. A cathode region is defined by an inner portion of each of the plurality of fins positioned below and contacting the first surface portion and a third portion of the semiconductor substrate positioned below and contacting the second surface portion. The cathode region is contiguous and the dopants in the cathode region and anode region have opposite conductivity types. A junction is defined between the anode region and the cathode region. A first contact interfaces with the anode region.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: August 21, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kasun Anupama Punchihewa, Jagar Singh
  • Patent number: 10050115
    Abstract: Approaches for LDMOS devices are provided. A method of forming a semiconductor structure includes forming a gate dielectric including a first portion having a first uniform thickness, a second portion having a second uniform thickness different than the first uniform thickness, and a transition portion having tapered surface extending from the first portion to the second portion. The gate dielectric is formed on a planar upper surface of a substrate. The tapered surface is at an acute angle relative to the upper surface of the substrate.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: August 14, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Brennan J. Brown, Natalie B. Feilchenfeld, Max G. Levy, Santosh Sharma, Yun Shi, Michael J. Zierak
  • Patent number: 10049880
    Abstract: A method of manufacturing a semiconductor device, where the device includes a donor layer that is obtained by changing a crystal defect formed in a first-conduction-type drift layer by proton radiation into a donor and in which the donor layer has an impurity concentration distribution including a first portion with a maximum impurity concentration and a second portion with a concentration gradient in which the impurity concentration is reduced from the first portion to both surfaces of the first-conduction-type drift layer. The method includes performing proton radiation for a first-conduction-type semiconductor substrate which will be the first-conduction-type drift layer to form a crystal defect in the first-conduction-type semiconductor substrate; and performing a heat treatment at a temperature equal to or higher than 300° C. and equal to or lower than 450° for one minute to 300 minutes to change the crystal defect into a donor.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: August 14, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Tomonori Mizushima, Yusuke Kobayashi
  • Patent number: 10026841
    Abstract: The present disclosure relates to the technical field of semiconductors and discloses a semiconductor device and a manufacturing method therefor. Forms of the method may include: providing a substrate structure, where the substrate structure includes: a semiconductor substrate, a semiconductor fin on the semiconductor substrate, isolation regions at two sides of the semiconductor fin, a gate dielectric layer on a surface of the semiconductor fin above the isolation regions, and a gate on a part of the gate dielectric layer; and performing threshold voltage adjustment ion implantation on a part of the semiconductor fin that is not covered by the gate, so as to enable implanted impurities to diffuse into a part of the semiconductor fin that is covered by the gate. Forms of the present disclosure can reduce loss of impurities implanted by the threshold voltage adjustment ion implantation.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: July 17, 2018
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Fei Zhou
  • Patent number: 10026842
    Abstract: A method for producing a semiconductor device includes a first step of forming a fin-shaped semiconductor layer on a semiconductor substrate and forming a first insulating film; a second step of forming a pillar-shaped semiconductor layer and a first dummy gate; a third step of forming a second dummy gate; a fourth step of forming a fifth insulating film and a sixth insulating film; a fifth step of depositing a first interlayer insulating film, removing the second dummy gate and the first dummy gate, forming a gate insulating film, depositing metal, and performing etch back to form a gate electrode and a gate line; a seventh step of forming a seventh insulating film; and an eighth step of forming insulating film sidewalls, forming a first epitaxially grown layer on the fin-shaped semiconductor layer, and forming a second epitaxially grown layer on the pillar-shaped semiconductor layer.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: July 17, 2018
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 10020363
    Abstract: Sacrificial semiconductor material portions are connected by a sacrificial semiconductor line extending along a different horizontal direction and protruding into an underlying source conductive layer. After formation of a vertically alternating stack of insulating layers and spacer material layers, memory stack structures are formed through the vertically alternating stack and through the sacrificial semiconductor material portions. A backside trench can be formed through the vertically alternating stack employing the sacrificial semiconductor line as an etch stop structure. Source strap material portions providing lateral electrical contact to semiconductor channels of the memory stack structures can be formed by replacement of sacrificial semiconductor material portions and the sacrificial semiconductor line with source strap material portions. Structural-reinforcement portions may be employed to provide structural stability during the replacement process.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: July 10, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Hiroyuki Ogawa, Yasuo Kasagi, Satoshi Shimizu, Kazuyo Matsumoto, Yohei Masamori, Jixin Yu, Tong Zhang, James Kai
  • Patent number: 10014273
    Abstract: A fixture assembly and method of forming a chip assembly is provided. The fixture assembly includes a first plate having an opening sized to accommodate a chip mounted on a laminate. The fixture assembly further includes a second plate mated to the first plate by at least one mechanical fastening mechanism. The fixture assembly further includes a space defined by facing surfaces of the first plate and the second plate and confined by a raised stepped portion of at least one of the first plate and the second plate. The space is coincident with the opening. The space is sized and shaped such that the laminate is confined within the space and directly abuts the stepped portion and the facing surfaces of the first plate and the second plate to be confined in X, Y and Z directions.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: July 3, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas E. Lombardi, Donald Merte, Gregg B. Monjeau, David L. Questad, Son K. Tran
  • Patent number: 10014236
    Abstract: A semiconductor device includes an insulating substrate, semiconductor elements and a cooling device. The cooling device includes a heat radiation substrate, fins, and a cooling case of a box-like shape that accommodates the fins and has a bottom wall and side walls. An introducing port and a discharge port for a cooling liquid are provided diagonally in a pair of side walls provided along the longitudinal direction of the assembly of the fins, among the side walls of the cooling case. A diffusion wall facing the introducing port is provided inside the cooling case.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: July 3, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Shinichiro Adachi
  • Patent number: 10008570
    Abstract: The contact area between a source strap structure of a buried source layer and semiconductor channels within memory structures can be increased by laterally expanding a source-level volume in which the memory stack structures are formed. In one embodiment, sacrificial semiconductor pedestals can be formed in source-level memory openings prior to formation of a vertically alternating stack of insulating layers and sacrificial material layers. Memory openings can include bulging portions formed by removal of the sacrificial semiconductor pedestals. Memory stack structures can be formed with a greater sidewall surface area in the bulging portions to provide a greater contact area with the source strap structure. Alternatively, bottom portions of memory openings can be expanded selective to upper portions during, or after, formation of the memory openings to provide bulging portions and to increase the contact area with the source strap structure.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: June 26, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jixin Yu, Kento Kitamura, Tong Zhang, Chun Ge, Yanli Zhang, Satoshi Shimizu, Yasuo Kasagi, Hiroyuki Ogawa, Daxin Mao, Kensuke Yamaguchi, Johann Alsmeier, James Kai
  • Patent number: 10002885
    Abstract: A substrate in which an insulating layer, a semiconductor layer and an insulating film are stacked on a semiconductor substrate and an element isolation region is embedded in a trench is prepared. After the insulating film in a bulk region is removed by dry etching and the semiconductor layer in the bulk region is removed by dry etching, the insulating layer in the bulk region is thinned by dry etching. A first semiconductor region is formed in the semiconductor substrate in a SOI region by ion implantation, and a second semiconductor region is formed in the semiconductor substrate in the bulk region by ion implantation. Then, the insulating film in the SOI region and the insulating layer in the bulk region are removed by wet etching. Thereafter, a first transistor is formed on the semiconductor layer in the SOI region and a second transistor is formed on the semiconductor substrate in the bulk region.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: June 19, 2018
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiki Yamamoto
  • Patent number: 9997618
    Abstract: Transistors and methods of forming the same include forming a fin of alternating layers of a channel material and a sacrificial material. Stress liners are formed in contact with both ends of the fin. The stress liners exert a stress on the fin. The sacrificial material is etched away from the fin, such that the layers of the channel material are suspended between the stress liners. A gate stack is formed over and around the suspended layers of channel material.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: June 12, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Juntao Li, Xin Miao
  • Patent number: 9991274
    Abstract: According to one embodiment, a semiconductor memory device includes a stacked body including a plurality of electrode members and a plurality of insulating members, each of the electrode members and each of the insulating members being stacked alternately in a first direction on the substrate. The semiconductor memory device also includes a memory hole that extends in the stacked body in the first direction and a semiconductor member that is disposed to extend in the memory hole in the first direction. The semiconductor memory device also includes a memory member that is disposed between the semiconductor member and the plurality of electrode members. The plurality of electrode members including a first electrode member and a second electrode member, a thickness of the memory member at the position of the first electrode member being greater than a thickness of the memory member at the position of the second electrode member.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: June 5, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Naoki Yasuda
  • Patent number: 9991251
    Abstract: A variable capacitance device that includes a semiconductor substrate, a redistribution layer disposed on a surface of the semiconductor substrate, and a plurality of terminal electrodes including first and second input/output terminals, a ground terminal and a control voltage application terminal. Moreover, a variable capacitance element section is formed in the redistribution layer from a pair of capacitor electrodes connected to the first and second input/output terminals, respectively, and a ferroelectric thin film disposed between the capacitor electrodes. Further, an ESD protection element is connected between the one of the input/output terminals and the ground terminal is formed on the surface of the semiconductor substrate.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: June 5, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Toshiyuki Nakaiso, Nobuo Sakai
  • Patent number: 9991208
    Abstract: A semiconductor wafer processing susceptor for holding a wafer having an orientation notch during deposition of a layer on the wafer, having a placement surface for supporting the semiconductor wafer in the rear edge region of the wafer, the placement surface having a stepped outer delimitation, and an indentation of the outer delimitation of the placement surface for placement of the partial region of the edge region of the rear side of the wafer in which the orientation notch is located onto a partial region of the placement surface delimited by the indentation of the outer delimitation of the placement surface. The susceptor is used in a method for depositing a layer on a wafer having an orientation notch, and wafers made of monocrystalline silicon upon which layers are deposited using the susceptor have greater local flatness on both front and rear sides proximate the orientation notch.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: June 5, 2018
    Assignee: SILTRONIC AG
    Inventors: Reinhard Schauer, Christian Hager