Patents Examined by Jayne Mershon
  • Patent number: 8916766
    Abstract: A solar concentrator and photoelectric conversion structure is described. The solar concentrator and photoelectric conversion structure includes a glass concentrator and at least one photoelectric conversion layer. The glass concentrator forms a light incident surface and a plane. The plane includes a plurality of concentrating elements. Each concentrating element includes a hollow taper and a hollow pillar. The hollow taper includes a first opening. The hollow pillar includes a second opening and a third opening on opposite sides, in which the second opening is correspondingly connected to the first opening. The photoelectric conversion layer deposited onto inner side surfaces of the hollow tapers and the hollow pillars of the concentrating elements. The photoelectric conversion layer includes at least one p-type material and at least one n-type material.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: December 23, 2014
    Assignee: National Cheng Kung University
    Inventors: Chau-Nan Hong, Shu-Chun Chu, Wang-Chieh Yu, Shan-Bin Chang, Min-Hsiung Hon
  • Patent number: 8912425
    Abstract: The inventors demonstrate herein that homogeneous Ag-doped PbTe/Ag2Te composites exhibit high thermoelectric performance (˜50% over La-doped composites) associated with an inherent temperature induced gradient in the doping concentration caused by the temperature-dependent solubility of Ag in the PbTe matrix. This method provides a new mechanism to achieve a higher thermoelectric efficiency afforded by a given material system, and is generally applicable to other thermoelectric materials.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 16, 2014
    Assignee: California Institute of Technology
    Inventors: G. Jeffrey Snyder, Yanzhong Pei
  • Patent number: 8907209
    Abstract: Disclosed is a photoelectric conversion element which includes a semiconductor electrode, an opposite electrode, and an electrolyte layer held between the semiconductor electrode and the opposite electrode, and which is a photoelectric conversion element of high practical use using a redox couple which has high transparency and ease of enclosure and exhibits high performance compared to an iodine redox couple. An electrolyte layer includes a redox couple formed of compounds represented by General Formula (1) and Formula (2), and ionic liquid having bis(fluorosulfonyl)imide anion represented by Formula (3).
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: December 9, 2014
    Assignee: Dai-Ichi Kogyo Seiyaku Co., Ltd.
    Inventor: Yasuteru Saito
  • Patent number: 8907205
    Abstract: A solar cell comprising a semiconductor solar cell of a first band gap; a buffer layer formed on a surface of the semiconductor solar cell; and at least one layer of a multiferroic or a ferroelectric material formed on the buffer layer; wherein the at least one layer of a multiferroic or a ferroelectric material has a second bang gap, the first band gap being smaller than the second band gap.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: December 9, 2014
    Assignee: Institut National de la Recherche Scientifique (INRS)
    Inventors: Riad Nechache, Andreas Ruediger, Federico Rosei
  • Patent number: 8895836
    Abstract: The dual axis solar tracker apparatus and method uses an azimuth actuator to adjust the azimuth of an attached solar panel and an elevation actuator to adjust the elevation of a panel seat holding the solar panel to track the azimuth and elevation of the sun as it moves through the sky. The panel seat rotatably supports the solar panel with two pins, and a support structure supports the panel seat with an elevation tracking pivot. The actuators are controlled with an actuator controller circuit that is controlled by a microcontroller. The microcontroller uses information about latitude, longitude, time of day and date to control the actuators and track the motion of sun without the need for sensors.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: November 25, 2014
    Assignee: King Saud University
    Inventors: Nowshad Amin, Mohammad Rezaul Karim, Mamdooh S. Al-Saud, Abdulrahman M. Al-Ahmari
  • Patent number: 8889041
    Abstract: Formulations and methods of making solar cells are disclosed. In general, the invention presents a solar cell contact made from a mixture wherein the mixture comprises a solids portion and an organics portion, wherein the solids portion comprises from about 85 to about 99 wt % of silver, and from about 1 to about 15 wt % of a glass component wherein the glass component comprises from about 15 to about 75 mol % PbO, and from about 5 to about 50 mol % SiO2, and preferably with no B2O3.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: November 18, 2014
    Assignee: Heraeus Precious Metals North America Conshohocken LLC
    Inventors: Srinivasan Sridharan, Tung Pham, Chandrashekhar S. Khadilkar, Aziz S. Shaikh
  • Patent number: 8889468
    Abstract: A tandem photovoltaic cell. The tandem photovoltaic cell includes a bifacial top cell and a bottom cell. The top bifacial cell includes a top first transparent conductive oxide material. A top window material underlies the top first transparent conductive oxide material. A first interface region is disposed between the top window material and the top first transparent conductive oxide material. The first interface region is substantially free from one or more entities from the top first transparent conductive oxide material diffused into the top window material. A top absorber material comprising a copper species, an indium species, and a sulfur species underlies the top window material. A top second transparent conductive oxide material underlies the top absorber material. A second interface region is disposed between the top second transparent conductive oxide material and the top absorber material. The bottom cell includes a bottom first transparent conductive oxide material.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: November 18, 2014
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8866008
    Abstract: A method of manufacturing a transparent pane, in particular a glass pane, which includes on at least one of its main surfaces a surface structure including an assembly of specified individual motifs in relief, in particular pyramids, cones, or truncated cones, created by embossing or by rolling. A structure is created on the surface of the pane constituted by individual motifs, based on one or more basic motifs but which are distinguished from each other by their depth, their height, and/or the perimeter of their base area, and/or by the position of their peak with respect to their base. With this variation, formation of intensity peaks of the reflected light is prevented and at the same time a high quality of light trapping is obtained by panes suitable, for example, for solar applications.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 21, 2014
    Assignee: Saint-Gobain Glass France
    Inventors: Nils-Peter Harder, Ulf Blieske, Dirk Neumann, Marcus Neander, Michele Schiavoni, Patrick Gayout
  • Patent number: 8865996
    Abstract: Continuous ceramic (e.g., silicon carbide) nanofibers (502, 602, 604, 606, 608, 702, 704, 1102, 1104) which are optionally p or n type doped are manufactured by electrospinning a polymeric ceramic precursor to produce fine strands of polymeric ceramic precursor which are then pyrolized. The ceramic nanofibers may be used in a variety of applications not limited to reinforced composite materials (400), thermoelectric generators (600, 700) and high temperature particulate filters (1200).
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: October 21, 2014
    Assignee: eM-TECH
    Inventors: Pawel Czubarow, Philip Premysler
  • Patent number: 8859884
    Abstract: A PV system may be used in case of emergencies. Each individual photovoltaic module receives a signal to determine if it is allowed to be operational or must shut down. Modules by default are shut off and safe to handle, absent the signal and in the presence of light.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: October 14, 2014
    Assignee: Helios Focus LLC
    Inventors: Randy Richard Dunton, Geoffrey Nicholas Barnard Sutton
  • Patent number: 8853522
    Abstract: A solar power system concurrently generates electricity and a heated transparent fluid while maintaining the solar cells at an optimum temperature and optimizing the heat transfer by matching the refractive index of the secondary sunlight concentrator to the transparent fluid. A solar tracker aligns a primary sunlight concentrator to collect sunlight and directs the sunlight and a system for transferring solar heat to a transparent fluid and into a solar power electrical generating system. The concentrated sunlight transfers solar heat to a transparent fluid via first pass through the transparent fluid. The concentrated sunlight is further concentrated to raise its temperature by passing the concentrated sunlight through a secondary sunlight concentrator, and then passed again through the transparent fluid to transfer heat. The solar energy diminished concentrated sunlight strikes a solar cell array to generate electricity.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 7, 2014
    Inventor: Bingwu Gu
  • Patent number: 8847061
    Abstract: Disclosed is a method of making solar collector assemblies for photovoltaic conversion. The method comprises providing a mold for receiving encapsulant, the mold having serially arranged, alternating peaks and valleys. A respective PV solar cell is placed into each of a series of the valleys such that the light-receiving surfaces of the PV solar cells face upwards. Uncured encapsulant is delivered into the mold and onto the light-receiving surfaces, and from the light-receiving surfaces to a level at least as high as the peaks so as to form, above the light-receiving surfaces, optical concentrators for concentrating light received by the optical concentrators and directing the light to the light-receiving surfaces. The encapsulant is then cured.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: September 30, 2014
    Assignee: Energy Focus, Inc.
    Inventor: Roger F. Buelow, II
  • Patent number: 8845335
    Abstract: A device for the support of photovoltaic modules such that the tilt angles of the photovoltaic modules can be varied to modify the exposure of the photovoltaic modules to sunlight for the purpose of generating solar electricity. The device allows for the reversible attachment and detachment of photovoltaic modules, serves as the storage for the photovoltaic modules when the photovoltaic modules are detached, and is easily portable by a single person.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: September 30, 2014
    Inventor: Lisa Echeverria Benatar
  • Patent number: 8841547
    Abstract: In one embodiment, a concentrated photovoltaic module or receiver package comprises a leadframe including a first section and a second section disposed in spaced relation to each other. Mounted to the first section of the leadframe is a receiver die. The receiver die is electrically connected to both the first and second sections of the leadframe. The receiver die is electrically connected to the second section of the leadframe by a plurality of conductive wires. The receiver die and portions of the leadframe are covered by a molded body which can be used to define an alignment feature for a light concentrating device such as a light guide or optical rod. Portions of the first and second sections of the leadframe protruding from the body are sized and configured to define integrated cable connectors for the receiver package.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: September 23, 2014
    Assignee: Amkor Technology, Inc.
    Inventor: Garry Pycroft
  • Patent number: 8835750
    Abstract: The present invention is an optically transparent laminate film comprising: at least three layers of film, wherein at least two of the at least three layers comprise ionomeric films, and wherein the film can be suitable for use in a photovoltaic cell or in packaging.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 16, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Geraldine M. Lenges
  • Patent number: 8835754
    Abstract: A method of manufacturing see-through thin film solar cells includes the steps of: placing a patterned photo mask above a first substrate which has a photoelectric conversion film formed on the surface thereof; and ablating the photoelectric conversion film via a laser beam passing through the patterned photo mask to form at least one hollow-out zone with different transmittance. By incorporating the laser beam with the photo mask in the manufacturing process, the problem of shortened laser lifespan caused by frequent switching of the laser for ablating patterns that occurs to the conventional technique can be resolved. Through controlling the thickness of the patterned photo mask, grey scale patterns can be displayed and resolution thereof can also be increased, thereby improve the added value of the thin film solar cells.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: September 16, 2014
    Inventor: Shui-Yang Lien
  • Patent number: 8835753
    Abstract: A solar cell includes a semiconductor base, a first doped semiconductor layer, an insulating layer, a second doped semiconductor layer and a first electrode layer. The semiconductor base has a first doped type. The first doped semiconductor layer, disposed on the semiconductor base, has a doped contact region. The insulating layer is disposed on the first doped semiconductor layer, exposing the doped contact region. The second doped semiconductor layer is disposed on the insulating layer and the doped contact region. The first doped semiconductor layer, the doped contact region and the second doped semiconductor layer have a second doped type, and a dopant concentration of the second doped semiconductor layer is between that of the first doped semiconductor layer and that of the doped contact region. The first electrode layer is disposed corresponding to the doped contact region.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: September 16, 2014
    Assignee: AU Optronics Corp.
    Inventors: Yen-Cheng Hu, Hsin-Feng Li, Zhen-Cheng Wu
  • Patent number: 8829336
    Abstract: A photovoltaic device includes one or more structures, an array of at least one of quantum dots and quantum dashes, at least one groove, and at least one conductor. Each of the structures comprises an intrinsic layer on one of an n type layer and a p type layer and the other one of the n type layer and the p type layer on the intrinsic layer. The array of at least one of quantum dots and quantum dashes is located in the intrinsic layer in at least one of the structures. The groove extends into at least one of the structures and the conductor is located along at least a portion of the groove.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: September 9, 2014
    Assignee: Rochester Institute of Technology
    Inventors: Ryne P. Raffaelle, David M. Wilt
  • Patent number: 8829326
    Abstract: The invention relates to a thermoelectric-based power generation system designed to be clamped onto the outer wall of a steam pipe or other heating pipe. The system can include a number of assemblies mounted on the sides of a pipe. Each assembly can include a hot block, an array of thermoelectric modules, and a cold block system. The hot block can create a thermal channel to the hot plates of the modules. The cold block can include a heat pipe onto which fins are attached.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: September 9, 2014
    Assignee: Cooper Union for the Advancement of Science
    Inventors: Robert Dell, Chih-Shing Wei, George Sidebotham
  • Patent number: RE45163
    Abstract: The present invention is an optically transparent laminate film comprising: at least three layers of film, wherein at least two of the at least three layers comprise ionomeric films, and wherein the film can be suitable for use in a photovoltaic cell or in packaging.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: September 30, 2014
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Geraldine M Lenges