Patents Examined by Jeremiah Smith
  • Patent number: 9023508
    Abstract: Disclosed is a bus bar assembly to electrically connect two or more cell module assemblies such that the assemblies are arranged in a lateral direction in a state in which the assemblies are in contact with each other or adjacent to each other to constitute a battery module assembly, the bus bar assembly including (a) a cover plate made of an electrically insulative material, the cover plate being mounted at upper ends of the assemblies, (b) two or more conductive connection parts electrically connected to external input and output terminals of the assemblies in a state in which the conductive connection parts are mounted on the cover plate, and (c) two or more bus bars mounted at the upper end of the cover plate in a direction perpendicular to a direction in which the assemblies are arranged to electrically connect the conductive connection parts of the assemblies to each other.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 5, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Jun Yeob Seong, Bum Hyun Lee, Jong Moon Yoon
  • Patent number: 9005506
    Abstract: A manufacturing method and a manufacturing apparatus of a fiber reinforced composite material are provided, in which the whole fiber-based material is impregnated with a resin and a molding can be performed with high dimensional accuracy. A manufacturing method of a fiber reinforced composite material according to the present invention includes fixing a fiber-based material having a first surface to a first mold to provide an opening for the first surface; setting a second mold having a second surface such that the first surface faces the second surface through a space; filling resin into the space; and relatively moving the second mold and the first mold to bring the second surface closer to the first surface, such that the fiber-based material is impregnated with the resin.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: April 14, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hideki Horizono, Shigeru Nishiyama
  • Patent number: 8999582
    Abstract: A composition including (a) a lithiated oxide of transition metals containing at least nickel, cobalt and aluminum and (b) a lithiated phosphate of at least one transition metal, the surface of which is at least partially covered by a layer of carbon. In the composition, the proportion by mass of the lithiated oxide of transition metals containing at least nickel, cobalt and aluminum is less than or equal to 10% of the weight of the composition, and the proportion by mass of the lithiated phosphate of at least one transition metal is greater than or equal to 90% of the weight of the composition. A lithium-ion or lithium-polymer type accumulator including at least one positive electrode containing this composition.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 7, 2015
    Assignee: SAFT Groupe SA
    Inventors: Cecile Tessier, Julien Breger, Olivier Jan, Philippe Biensan, Bridget Deveney, Kamen Nechev
  • Patent number: 8974973
    Abstract: The present invention is directed to a starch-based battery system. The starch-based battery system uses a rheological and replaceable starch gluten electrolyte that generates colloidal starch gel adhesive contacted with and/or attached on electrodes to generate current for powering electronic devices. The starch-based battery system that includes control circuit and standard cap module replaces a conventional dry cell battery or is integrated with electronic devices to power, for example, flash-light, lighting ornaments or magnetic actuated motion products and toys. In other embodiments of the invention, the starch-based battery system is integrated into a device for attracting aquatic life forms in an aquatic environment, wherein the starch-based battery powers a light source and/or sound source and also the starch gluten electrolyte acts as bait for attracting aquatic life forms within the aquatic environment.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: March 10, 2015
    Inventors: Wing Fai Leung, Po Fong Cheng
  • Patent number: 8968620
    Abstract: Control of lateral strain and lateral strain ratio (dt/db) between template and substrate through the selection of template and/or substrate thicknesses (Tt and/or Tb), control of template and/or substrate back pressure (Pt and/or Pb), and/or selection of material stiffness are described.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: March 3, 2015
    Assignees: Canon Nanotechnologies, Inc., Molecular Imprints, Inc.
    Inventors: Se-Hyuk Im, Mahadevan GanapathiSubramanian, Edward Brian Fletcher, Niyaz Khusnatdinov, Gerard M. Schmid, Mario Johannes Meissl, Anshuman Cherala, Frank Y. Xu, Byung-Jin Choi, Sidlgata V. Sreenivasan
  • Patent number: 8960107
    Abstract: An apparatus for processing fly ash comprising a heated refractory-lined vessel having a series of spaced angled rows of swirl-inducing nozzles which cause cyclonic and/or turbulent air flow of the fly ash when introduced in the vessel, thus increasing the residence time of airborne particles. Also disclosed is a method of fly ash beneficiation using the apparatus.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: February 24, 2015
    Assignee: The SEFA Group Inc.
    Inventors: Jimmy Clements Knowles, Richard F. Storm
  • Patent number: 8962219
    Abstract: An interconnect for a fuel cell stack includes a first plurality of ribs extending from a first major surface of the interconnect and defining a first plurality of gas flow channels between the ribs, the ribs extending between a first rib end and a second rib end and having a tapered profile in a vertical dimension, perpendicular to the first major surface of the interconnect, proximate at least one of the first rib end and the second rib end, wherein the ribs comprise a flat upper surface and rounded edges between the flat upper surface and the adjacent gas flow channels, the rounded edges having a first radius of curvature, and wherein the gas flow channels comprise a rounded surface having a second radius of curvature, different from the first radius of curvature.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: February 24, 2015
    Assignee: Bloom Energy Corporation
    Inventors: Stephen Couse, Daniel Darga, Harald Herchen, Chockkalingam Karuppaiah
  • Patent number: 8962172
    Abstract: A battery having a cooling apparatus for temperature control of the battery is provided. The battery has a plurality of individual cells connected in parallel and/or in series with one another using cell connectors. The individual cells are attached to the cooling apparatus such that they can be prestressed by means of the cell connectors.
    Type: Grant
    Filed: June 27, 2009
    Date of Patent: February 24, 2015
    Assignee: Daimler AG
    Inventors: Michael Bolze, Christian Bragrock, Jens Meintschel, Dirk Schroeter
  • Patent number: 8962217
    Abstract: Provided is a fuel cell which can obtain a sufficiently high electromotive force even under a low-temperature condition such as room temperature without using a deleterious substance or platinum. This fuel cell uses an electrolyte layer containing a layer-shaped metal oxide which has been subjected to the steam treatment.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: February 24, 2015
    Assignee: National University Corporation Hokkaido University
    Inventors: Wataru Ueda, Tatsuya Takeguchi
  • Patent number: 8951693
    Abstract: There is provided a membrane electrode assembly including an anode gas diffusion layer included in an anode and a cathode gas diffusion layer included in a cathode, wherein the anode gas diffusion layer includes an anode gas diffusion substrate and an anode microporous layer disposed on a first surface of the anode gas diffusion substrate, wherein the cathode gas diffusion layer includes a cathode gas diffusion substrate and a cathode microporous layer disposed on a first surface of the cathode gas diffusion substrate, and wherein at least one of a strike-through ratio on a second surface of the anode gas diffusion substrate and a strike-through ratio on a second surface of the cathode gas diffusion substrate is larger than 0.2%.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 10, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Hirofumi Takami, Shigeru Sakamoto
  • Patent number: 8951035
    Abstract: An injection molding tool is used to produce plastic parts such as toothbrush bodies or razor handles, for example. The tool has a stationary center mold block and a pair of outer mold blocks. The center mold block has two parallel opposed molding faces joined by two parallel opposed side faces extending perpendicular to the molding faces. The molding faces have parallel partial mold cavities formed therein and the outer mold blocks each are associated with one mold face of the center mold block and each have a molding face with parallel partial mold cavities formed therein which together with corresponding partial mold cavities of the associated mold face of the center mold block form complete mold cavities. Holders are indexed alongside the peripheral faces and around corners formed between the peripheral faces to hold and transport molded parts alongside the peripheral faces of the center mold block.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: February 10, 2015
    Assignee: GB Boucherie NV
    Inventor: Bart Gerard Boucherie
  • Patent number: 8945779
    Abstract: A main object of the present invention is to provide a solid electrolyte material having excellent Li ion conductivity. To attain the object, the present invention provides a solid electrolyte material represented by a general formula: Lix(La1-aM1a)y(Ti1-bM2b)zO?, characterized in that “x”, “y”, and “z” satisfy relations of x+y+z=1, 0.652?x/(x+y+z)?0.753, and 0.167?y/(y+z)?0.232; “a” is 0?a?1; “b” is 0?b?1; “?” is 0.8???1.2; “M1” is at least one selected from the group consisting of Sr, Na, Nd, Pr, Sm, Gd, Dy, Y, Eu, Tb, and Ba; and “M2” is at least one selected from the group consisting of Mg, W, Mn, Al, Ge, Ru, Nb, Ta, Co, Zr, Hf, Fe, Cr, and Ga.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Chihiro Yada, Hiroshi Suyama, Shoji Yokoishi, Brian Elliott Hayden, Thierry Le Gall, Duncan Clifford Alan Smith, Christopher Edward Lee
  • Patent number: 8894911
    Abstract: The present invention discloses a method for preparing vials, preferably medical vials by two-stage injection-stretch-blow-molding with a random copolymer of propylene having a melt index MI2 of from 1 to 3 dg/min and an ethylene content of from 2 to 3.5 wt % based on the weight of the resin, and wherein the preform injection temperature is of at least 280° C.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: November 25, 2014
    Assignee: Total Research & Technology Feluy
    Inventors: Laurent Duranel, Emmanuel Humbeeck
  • Patent number: 8891080
    Abstract: Detection of periodically repeating nanovoids is indicative of levels of substrate contamination and may aid in reduction of contaminants on substrates. Systems and methods for detecting nanovoids, in addition to, systems and methods for cleaning and/or maintaining cleanliness of substrates are described.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: November 18, 2014
    Assignees: Canon Nanotechnologies, Inc., Molecular Imprints, Inc.
    Inventors: Niyaz Khusnatdinov, Dwayne L. LaBrake
  • Patent number: 8865355
    Abstract: A main object of the present invention is to provide a Li—La—Zr—O-based solid electrolyte material having favorable denseness. The present invention solves the problem by providing a solid electrolyte material including Li, La, Zr, Al, Si and O, having a garnet structure, and being a sintered body.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: October 21, 2014
    Assignees: National University Corporation Shizuoka University, Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasutoshi Iriyama, Shota Kumazaki, Murugan Ramaswamy, Yutaka Hirose
  • Patent number: 8846220
    Abstract: Disclosed is a microbial fuel cell cathode assembly comprising a catalyst (6) and an electrically conductive catholyte wicking member (5) having a catalyst contacting surface (5a) in contact with the catalyst, an electrical contact region (5c) for contacting an electrical connector, and a catholyte supply region (5b) for receiving catholyte from a catholyte supply (9), wherein the electrically conductive catholyte wicking member is operable to wick received catholyte from the catholyte supply region to form a film of catholyte on a part of the surface of the catalyst such that a part of the surface of the catalyst is in contact with both the film of catholyte and a part of the surface of the catalyst is in contact with a gas pathway arranged to supply oxygen to the catalyst.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: September 30, 2014
    Assignee: Power Knowledge Limited
    Inventor: Vyacheslav Viktorovich Fedorovich
  • Patent number: 8845316
    Abstract: A process for producing at least one three-dimensional object by solidifying a solidifyable material, comprising the steps of: providing an object carrier capable of carrying the object to be produced; providing a material capable of solidifying when subjected to energy supply; bringing a solidifyable material carrier/provider in a position to carry/provide solidifyable material at least in a building region where solidifyable material is to be solidified; supplying, to the building region, energy capable of solidifying the solidifyable material; and sensing, measuring and/or controlling a condition selected from the group consisting of pressure and/or strain. Alternatively or in combination, contact pressure, fluid pressure and/or material flowability can be sensed and/or adjusted.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: September 30, 2014
    Assignee: Envisiontec GmbH
    Inventors: Volker Schillen, Ali El-Siblani
  • Patent number: 8846269
    Abstract: A polymer electrolyte fuel cell of the present invention comprises a membrane-electrode assembly (5), a first separator (6a), and a second separator (6b); the first separator (6a) having a groove-shaped first reaction gas channel (8) on one main surface of the first separator (6a) which contacts the first electrode (4a) such that a plurality of straight-line-shaped first rib portions (11) run along each other; the second electrode (4b) having a groove-shaped second reaction gas channel (9) on one main surface of the second electrode (4b) which contacts the second separator (6b) such that a plurality of straight-line-shaped second rib portions (12) run along each other; a ratio of a first reaction gas channel width of at least an upstream portion (18b) of the first reaction gas channel (8) with respect to a second rib portion (12) is greater than 0 and not greater than 1.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: September 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Takeou Okanishi, Naotsugu Koashi, Yoichiro Tsuji
  • Patent number: 8846231
    Abstract: A battery module of the present invention is adaptable to be utilized in various configurations including and not limited to an overlapping battery cell packaging configuration and a vertical stack battery cell packaging configuration used in an automotive and non-automotive applications. The battery module has a plurality of battery heatsink assemblies with the cells disposed therebetween. A plurality of rods extend through the each heatsink assemblies to secure the heatsink assemblies and the cell with one another to form the battery module.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: September 30, 2014
    Assignee: Enerdel, Inc.
    Inventors: Derrick S. Buck, Robert N. Fattig, Bruce J. Silk
  • Patent number: 8845935
    Abstract: The invention provide a method for cast-molding hydrogel contact lenses, especially silicone hydrogel contact lenses by using plastic molds of a poly(cycloalkylene-dialkylene terephthalate) copolymer. These plastic molds do not need to be degassed and stored in an oxygen-free atmosphere (e.g., N2 or Ar) before being used for cast-molding silicone hydrogel contact lenses in the absence of oxygen and resultant silicone hydrogel lenses can still have relatively high ion permeability and relatively low variation in targeted optical power, compared with silicone hydrogel lenses made from a conventional mold material, such as polypropylene. The invention also provides plastic molds for cast-molding silicone hydrogel contact lenses.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: September 30, 2014
    Assignee: Novartis AG
    Inventors: Alice Weimin Liu, Lance Kyle Lipscomb, Michael Schaub, Dawn A. Smith