Patents Examined by Jerry Martin Blevins
  • Patent number: 7221816
    Abstract: A substrate for mounting an optical element having a light emission/reception part is disclosed. The substrate includes a base material and an optical waveguide penetrating through the base material. The optical waveguide is positioned opposite to the light emission/reception part. The base material is formed of silicon.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: May 22, 2007
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Kei Murayama
  • Patent number: 7221838
    Abstract: An optical fiber has a core region and a first cladding region surrounding the core. The first cladding region is doped to increase the fiber's refractive index volume. A second cladding region surrounds the first cladding region. The second cladding region is doped to reduce the fiber's cutoff wavelength, offsetting an increase in the fiber's cutoff wavelength caused by the first cladding region. An outer cladding surrounds the cutoff reduction region. In a further embodiment, the volume increasing region is doped to have a refractive index profile that is sloped to increase from the region's outer circumference towards its inner circumference. In another embodiment, the cutoff reduction region has a step refractive index profile that may have more than one section.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: May 22, 2007
    Assignee: Furukawa Electric North America, Inc.
    Inventors: Dan Jakobsen, Bera Palsdottir, Torben E. Veng
  • Patent number: 7220064
    Abstract: A coupling optical system for coupling light into an optical fiber of an optical communications system includes a liquid that includes a dispersion of microscopic particles and two transparent media that hold the liquid between them along an optical axis. The refractive power of the liquid is variable according to the electromagnetic field applied to the liquid to vary the migration of the microscopic particles of the dispersion within the liquid. The position of a light collecting point of the coupling optical system is adjustable based on the variation in the refractive power of the liquid so that light can be efficiently coupled into optical fibers at different distances along the optical axis from the coupling optical system. At the light collecting point, the end surface of an optical fiber collects light from a light source or another optical fiber. One or more collimator lenses may help converge the light.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: May 22, 2007
    Assignee: Fujinon Corporation
    Inventors: Masao Mori, Yu Kitahara, Makoto Oomura, Yoko Yamamoto, Toshiaki Katsuma
  • Patent number: 7217041
    Abstract: A method for connecting optical signals carried by optical fibers between an optical encoder readhead and an optical signal processing IC having a plurality of photodetector portions arranged in a photodetector configuration. The optical signal processing IC is fixed to a substrate at a first position and orientation. Then, a reference-surface block including at least one reference surface is fixed to the substrate in a second orientation and position based on the first position and orientation. A fiber-optic end piece is provided, which has at least one corresponding-reference surface and a plurality of optical fiber locating features that are arranged relative to the corresponding-reference surface. A plurality of the optical fibers are fixed to the plurality of optical fiber locating features to provide a coupling configuration of optical fiber ends that nominally matches the photodetector configuration.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: May 15, 2007
    Assignee: Mitutoyo Corporation
    Inventors: Joseph Daniel Tobiason, Patrick H. Mawet, Bjorn E. B. Jansson
  • Patent number: 7215868
    Abstract: In a fixing apparatus for fixing an optical connector to an optical cable having an optical fiber and wire members arranged around the optical fiber, the fixing apparatus includes first, second, and third holding members. The first holding member is adapted to be inserted between the wire member and the optical fiber. The second holding member is adapted to be disposed outside the wire members, the second holding member cooperating with the first holding member to tightly hold the wire members therebetween. The third holding member surrounding the second holding member and having an axial end portion adapted to be engaged with the second holding member in a rotation direction with respect to the optical cable. In addition, the third holding member has another axial end portion adapted to be connected to the optical connector.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: May 8, 2007
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Hideto Shimazu, Akihiro Onogawa, Yuichi Koreeda, Haruyuki Koshimizu, Toshifumi Takagi, Kiyoyuki Mutaguchi, Kiyokazu Fukudome
  • Patent number: 7213977
    Abstract: An optical module with a CAN package contains a stem and a lead. The stem has a hole penetrating the stem and an inner cylindrical surface surrounding the hole. The lead extends through the hole such that a gap exists between the lead and the inner cylindrical surface. The gap contains first and second portions which are arranged along the longitudinal direction of the hole. The first portion is filled with sealing material which is dielectric. The second portion is filled with air.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: May 8, 2007
    Assignee: NEC Corporation
    Inventor: Kazuhiro Mitamura
  • Patent number: 7212700
    Abstract: The invention provides an electro-optic hybrid circuit board having an optical waveguide superposed on a wiring circuit board, the electro-optic hybrid circuit board comprising: an insulating layer; a conductor pattern formed on the insulating layer; an undercladding layer formed on the conductor pattern-having insulating layer so as to surround the conductor pattern; a core layer formed on the undercladding layer; and an overcladding layer formed to cover the core layer and the undercladding layer.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: May 1, 2007
    Assignee: Nitto Denko Corporation
    Inventors: Ryuusuke Naitou, Hideyuki Usui, Amane Mochizuki
  • Patent number: 7212698
    Abstract: Techniques for circuit board processing are provided. In one aspect, a method of processing a circuit board having one or more optical waveguides associated therewith is provided. The method comprises the following steps. One or more etch stop layers in proximity to the one or more waveguides are provided, at least one of the etch stop layers comprising one or more fiducials therein. From a surface of the circuit board, the one or more etch stop layers are used to selectively remove material to provide openings having a defined positioning and depth in the circuit board. A circuit board having one or more optical waveguides associated therewith is also provided.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: May 1, 2007
    Assignee: International Business Machines Corporation
    Inventors: Urs Bapst, Christoph Berger, Russell Alan Budd, Folkert Horst, Bert Jan Offrein
  • Patent number: 7209608
    Abstract: Provided is a Fabry-Perot type wavelength tunable optical filter, comprising a first mirror; a second mirror located over the first mirror; a driving body located over the first mirror, and having both ends fixed to the first mirror through a spacer; a plurality of electrodes, each formed on both ends of the driving body; a rod structure connecting a center of the driving body and the second mirror; a plurality of fixing means, each fixed to the first mirror at both sides of the rod structure through the spacer; and a plurality of elastic bodies connecting the rod structure with the plurality of fixing means and acting as a rotational axis. And the mirror is driven by the rod structure acting as a lever that has an elastic body as a rotational axis, when warping is generated by electro-thermal expansion, electromagnetic force or external force. Thereby the mirror can be driven in the larger wavelength tunable range and the low power consumption.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: April 24, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chang Kyu Kim, Myung Lae Lee, Chi Hoon Jun, Chang Auck Choi, Yun Tae Kim
  • Patent number: 7203396
    Abstract: An all optical chopping device for shaping and reshaping comprising an all optical AND logic gate having a first input for receiving a first optical signal, a second input for receiving a second optical signal and at least one output. The AND gate may be arranged to produce at least at one output thereof an optical output signal corresponding to a portion of the AND product of the first optical signal and the second optical signals. The optical output signal may be narrower than at least one of the first optical signal and the second optical signal.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 10, 2007
    Assignee: Main Street Ventures, LLC
    Inventors: Arie Shahar, Eldan Halberthal
  • Patent number: 7194158
    Abstract: A method for producing light-scattering structures on flat optical waveguides into which light can be coupled for making the light-scattering structures visible. The light-scattering structures are applied to a surface of the optical waveguide in accordance with a predetermined arrangement prescription. The light-scattering structures are applied directly to the optical waveguide with a non-impact method. The application of the light-scattering structures can occur by imprinting with a computer-controlled, contactless-operating print head or by electro-photographic coating.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: March 20, 2007
    Assignee: Schott AG
    Inventors: Bernd Schultheis, Harry Engelmann, Clemens Ottermann
  • Patent number: 7194179
    Abstract: An assembly tool for installing an optical fiber in an optical connector includes a base having a connector mounting region to receive and secure the optical connector on the base, the connector including a housing and a ferrule. The assembly tool further includes a protrusion setting mechanism to set a protrusion of the terminal end of the optical fiber, the protrusion corresponding to a distance the terminal end of the fiber extends from an end face of the connector ferrule.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: March 20, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Johnny P. Bryant, James R. Bylander, James B. Carpenter, Steven L. Johnson
  • Patent number: 7184625
    Abstract: An optical wavelength grating coupler incorporating one or more distributed Bragg reflectors (DBR) or other reflective elements to enhance the coupling efficiency thereof. The grating coupler has a grating comprising a plurality of scattering elements adapted to scatter light along a portion of an optical path, and the one or more DBRs are positioned with respect to the grating such that light passing through the grating towards the substrate of the grating coupler is reflected back by DBRs toward the grating. The DBR comprises a multilayer stack of various materials and may be formed on the substrate of the grating coupler. The grating coupler may include a gas-filled cavity, where the cavity is formed by a conventional etching process and is used to reflect light toward the grating. The grating coupler may also incorporate an anti-reflection coating to reduce reflective loss on the surface of the grating.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: February 27, 2007
    Assignee: Luxtera, Inc
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime J. Rattier
  • Patent number: 7184627
    Abstract: An optical wavelength grating coupler incorporating one or more distributed Bragg reflectors (DBR) or other reflective elements to enhance the coupling efficiency thereof. The grating coupler has a grating comprising a plurality of scattering elements adapted to scatter light along a portion of an optical path, and the one or more DBRs are positioned with respect to the grating such that light passing through the grating towards the substrate of the grating coupler is reflected back by DBRs toward the grating. The DBR comprises a multilayer stack of various materials and may be formed on the substrate of the grating coupler. The grating coupler may include a gas-filled cavity, where the cavity is formed by a conventional etching process and is used to reflect light toward the grating. The grating coupler may also incorporate an anti-reflection coating to reduce reflective loss on the surface of the grating.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: February 27, 2007
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime Jean Rattier
  • Patent number: 7174078
    Abstract: An optical fiber for transmitting light, said optical fiber having an axial direction and a cross section perpendicular to said axial direction, said optical fiber comprising: (1) a first core region comprising a first core material having a refractive index Nco,1; (2) a microstructured first cladding region surrounding the first core region, said first cladding region comprising a first cladding material and a plurality of spaced apart first cladding features or elements that are elongated in the fiber axial direction and disposed in the first cladding material, said first cladding material having a refractive index Ncl,1 and each said first cladding feature or element having a refractive index being lower than Ncl,1, whereby a resultant geometrical index Nge,cl, 1? of the first cladding region is lowered compared to Ncl,1; (3) a second core region surrounding said first cladding region, said second core region comprising a second core material having a refractive index Nco,2, and (4) a second cladding regio
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: February 6, 2007
    Assignee: Crystal Fibre A/S
    Inventors: Stig Eigil Barkou Libori, Jes Broeng, Anders Bjarklev, Niels Asger Mortensen, Jacob Riis Folkenberg
  • Patent number: 7171091
    Abstract: Single transverse mode fiber amplifier and laser operation is obtained with a multi-mode signal core surrounded by cladding containing irregular microstructuring that causes loss in all of the core modes except the fundamental while maintaining robust guiding of the fundamental mode resulting in higher fiber laser power capacity.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: January 30, 2007
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Benjamin G. Ward
  • Patent number: 7167626
    Abstract: The purpose of this invention is a device (1) for fixing a fiber (2) comprising a rigid and brittle core (24) surrounded by a mechanically deformable cladding (22), and that can be subjected to at least one mechanical stress. According to the invention, the clamping device comprises concentric jaws (4), each jaw comprising an inner surface (14) composed of a central portion (16) and two end portions (18, 20), the end portions being made so as to prolong the central portion by gradually moving away from the main axis of the device, each comprising at least one part in contact with the mechanically deformable cladding when the jaw occupies a clamped position. Use of this device for fixing an optical fiber and any optical fiber sensor, particularly a Bragg grating optical fiber sensor.
    Type: Grant
    Filed: July 4, 2003
    Date of Patent: January 23, 2007
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Laurent Maurin
  • Patent number: 7167609
    Abstract: An optical switch has an input port, output ports, optical waveguides whose output path of an optical signal branch into two. A first stage optical switch section is provided in a branching portion of the optical waveguide, which switches a propagating path of an optical signal to a path leading to the desired output port. A subsequent stage optical switch section is provided in a branching portion of the optical waveguide subsequent to the first stage optical switch section, which switches a propagating path of a leakage light, which is leaked from the first stage optical switch section, to a path which does not propagates the leakage light to any of the output ports. The first stage optical switch section and the subsequent stage optical switch section switch a path of an optical signal according to a refractive index change caused by a carrier injection.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: January 23, 2007
    Assignee: Yokogawa Electric Corporation
    Inventors: Masayuki Suehiro, Shinji Iio, Shinichi Nakajima, Yoshiyuki Asano, Morio Wada, Akira Miura, Katsuya Ikezawa
  • Patent number: 7164481
    Abstract: A coefficient of linear expansion measuring apparatus includes: two reflection plates between which a sample is put, a container to house them, which is filled with a gas having known rate of a refractive index variation, a temperature regulating member to set a temperature in the container variably, a light source to irradiate an irradiating light to reflecting surfaces of the reflection plates, a light receiving element to receive reflected lights in which the lights interferes each other and detecting a light intensity thereof, and a calculating member to calculate a coefficient of linear expansion of the sample, wherein: the calculating member calculates an optical path length variation between the reflecting surfaces from an output variation of the light receiving element, and calculates a length variation of the sample by correcting a part of the optical path length variation derived from the refractive index variation of the gas caused by the temperature variation.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: January 16, 2007
    Assignee: Kabushiki Kaisha Ohara
    Inventors: Nobuo Kawasaki, Toshihide Nakajima, Masahiko Daimon, Osamu Okajima
  • Patent number: 7162118
    Abstract: A single-sided optical switching device for functioning as a dual switch wherein individual switches share common switching means is disclosed. The individual switches have separate ports and share common switching means formed by a moveable refractor, a single lens and a stationary reflector, wherein the movable refractor is positionable between the lens and the stationary reflector for redirecting light within ports of individual switches. An embodiment of the device provides a single-sided dual 2×2 bypass switch comprising a single lens and a single switching element.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: January 9, 2007
    Assignee: JDS Uniphase Inc.
    Inventor: Paul Colbourne