Patents Examined by Jerry Rahll
  • Patent number: 11543588
    Abstract: A method for depositing silicon oxynitride film structures is provided that is used to form planar waveguides. These film structures are deposited on substrates and the combination of the substrate and the planar waveguide is used in the formation of optical interposers and subassemblies. The silicon oxynitride film structures are deposited using low thermal budget processes and hydrogen-free oxygen and hydrogen-free nitrogen precursors to produce planar waveguides that exhibit low losses for optical signals transmitted through the waveguide of 1 dB/cm or less. The silicon oxynitride film structures and substrate exhibit low stress levels of less than 20 MPa.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: January 3, 2023
    Inventors: William Ring, Miroslaw Florjanczyk, Suresh Venkatesan
  • Patent number: 11543600
    Abstract: Fiber optic connectors, cable assemblies and methods for making the same are disclosed. In one embodiment, the optical connector comprises a housing and a ferrule. The housing comprises a longitudinal passageway between a rear end and a front end, and, a part of the rear portion of the housing comprises a round cross-section and a part of the front portion of the housing comprises a non-round cross-section with a transition region disposed between the rear portion and the front portion.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: January 3, 2023
    Assignee: Corning Research & Development Corporation
    Inventor: Joel Christopher Rosson
  • Patent number: 11541610
    Abstract: A method of aligning a first and a second structure, the first structure comprising one or more first surface relief features and a channel system communicating with a surface of the first structure at one or more of the first surface relief features, the second structure comprising one or more second surface relief features shaped complementarily to the first surface relief features; the method comprising: generating suction in the channel system to draw the first and second structures together in a drawing direction; wherein, when the first and second structures are drawn together, the interaction between one or more of the first surface relief features and one or more of the second surface relief features aligns the structures in a plane perpendicular to the drawing direction such that the first and second surface relief features mate.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: January 3, 2023
    Assignee: Huber+Suhner Polatls Limited
    Inventors: Peter John Wilkinson, Daping Chu
  • Patent number: 11543599
    Abstract: Fiber optic connectors and junctions between fiber optic connectors include ferrules terminating a plurality of optical fibers, the ferrules having a ferrule keying portion that rotationally aligns and constrains the ferrules with a guide keying portion of an annular guide tube. The ferrules may further aligned and constrained and aligned in a lateral direction with a ferrule sleeve in the junction of connectors. Each of the ferrule sleeve and the guide keying portion individually constrain movement of the ferrules in different dimensions, the guide keying portion rotationally aligning and constraining the ferrules, while allowing freedom of movement in a lateral direction, and the ferrule sleeve aligning and constraining the ferrules in the lateral direction, while allowing rotational freedom of movement.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: January 3, 2023
    Assignee: Corning Research & Development Corporation
    Inventors: James Scott Sutherland, Thomas Theuerkorn
  • Patent number: 11536904
    Abstract: An optical subassembly includes a planar dielectric waveguide structure that is deposited at temperatures below 400 C. The waveguide provides low film stress and low optical signal loss. Optical and electrical devices mounted onto the subassembly are aligned to planar optical waveguides using alignment marks and stops. Optical signals are delivered to the submount assembly via optical fibers. The dielectric stack structure used to fabricate the waveguide provides cavity walls that produce a cavity, within which optical, optoelectronic, and electronic devices can be mounted. The dielectric stack is deposited on an interconnect layer on a substrate, and the intermetal dielectric can contain thermally conductive dielectric layers to provide pathways for heat dissipation from heat generating optoelectronic devices such as lasers.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: December 27, 2022
    Inventors: William Ring, Miroslaw Florjanczyk
  • Patent number: 11536912
    Abstract: The present disclosure relates generally to methods for processing ferrules of fiber optic connectors such that the amount of cleaving and/or polishing that is required is eliminated or at least reduced. An apparatus and method of dispensing adhesive through a front end face of a fiber optic ferrule are provided.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: December 27, 2022
    Assignee: CommScope Technologies LLC
    Inventor: Michael S. Riegel
  • Patent number: 11525955
    Abstract: An electronic device may have a display, a display cover layer, and a drawn sheet-packed coherent fiber bundle. The coherent fiber bundle may have an input surface that receives an image from the display and a corresponding output surface to which the image is transported. The coherent fiber bundle may be placed between the display and the display cover layer and mounted to a housing. The coherent fiber bundle may have fiber cores with bends that help conceal the housing from view and make the display appear borderless. The coherent fiber bundle has filaments formed from elongated strands of binder in which multiple fibers are embedded. Sheets of filaments are stacked and fused together to form a block of material that is subsequently drawn to form the drawn sheet-packed coherent fiber bundle.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: December 13, 2022
    Assignee: Apple Inc.
    Inventors: Wei Lin, Nathan K. Gupta, Prabhakar Gulgunje, Shubhaditya Majumdar
  • Patent number: 11520110
    Abstract: A first optical device is adapted to couple to a second optical device along a coupling direction and includes two spaced apart pairs of leading and trailing pads, such that when the first optical device lands and slides on a landing surface of the second optical device to optically couple to the second optical device, and for each pair of leading and trailing pads, the leading pad prevents any debris on the landing surface from collecting on the trailing pad. Upon full coupling of the first optical device with the second optical device, the leading pads do not make contact with the landing surface. The first optical device may be, for example, an optical ferrule or a cradle having a recess adapted to receive an optical ferrule.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: December 6, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael A. Haase, James M. Nelson, Terry L. Smith
  • Patent number: 11506854
    Abstract: A fiber optic telecommunications device includes a rack for mounting a plurality of chassis, each chassis including a plurality of trays slidably mounted thereon and arranged in a vertically stacked arrangement.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: November 22, 2022
    Assignee: CommScope Technologies LLC
    Inventors: Brent Campbell, Ryan Kostecka, Paula Lockhart, Scott C. Sievers, Dustin Tichy, Gregory J. Schaible, Jonathan T. Lawson, Oscar Fernando Bran de León
  • Patent number: 11506952
    Abstract: Provided is an optical phased array including a light injector, a first splitter connected to the light injector, a first phase shifter connected to the first splitter, a plurality of waveguides connected to the first splitter, portions of the plurality of waveguides being connected to the first splitter via the first phase shifter, an antenna array connected to the plurality of waveguides, a single mode filter provided in each of the plurality of waveguides, and a first photodetector connected to the first splitter and configured to detect a portion of light radiated onto the antenna array.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: November 22, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyunil Byun, Inoh Hwang
  • Patent number: 11493715
    Abstract: A rollable optical fiber ribbon utilizing low attenuation, bend insensitive fibers and cables incorporating such rollable ribbons are provided. The optical fibers are supported by a ribbon body, and the ribbon body is formed from a flexible material such that the optical fibers are reversibly movable from an unrolled position to a rolled position. The optical fibers have a large mode filed diameter, such as ?9 microns at 1310 nm facilitating low attenuation splicing/connectorization. The optical fibers are also highly bend insensitive, such as having a macrobend loss of ?0.5 dB/turn at 1550 nm for a mandrel diameter of 15 mm.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: November 8, 2022
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Patent number: 11493688
    Abstract: An optical module includes an interface electrically connected to an external device to receive a data signal to be transmitted, a signal processor configured to perform serialization and signal modulation on the received data signal, an optical transceiver configured to generate an optical transmission signal by receiving a direct current (DC) light source, in which a plurality of light sources having different wavelengths are multiplexed, from an optical power supply and performing optical modulation thereon through the serialized and modulated data signal, and an optical fiber connector configured to output the generated optical transmission signal to the external device and receive an optical reception signal from the external device.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: November 8, 2022
    Assignee: ELECTRONICSAND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sae-Kyoung Kang, Jongtae Song, Joon Young Huh
  • Patent number: 11493693
    Abstract: The application provides a interface light path structure with all polarization-maintaining function. A first polarization-maintaining-transferring device includes a first port, a second port, and a third port, wherein the first port receives a first polarized light output by the polarization beam-splitting device, the second port is connected to the first Faraday rotation mirror, and the third port is connected to a first port of the first polarization-maintaining coupler. A second polarization-maintaining-transferring device includes a first port, a second port, and a third port, wherein the first port receives a second polarized light output by the polarization beam-splitting device, the second port is connected to the second Faraday rotation mirror, and the third port is connected to a second port of the first polarization-maintaining coupler.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: November 8, 2022
    Assignee: GUANGDONG FU'AN TECHNOLOGY DEVELOPMENT CO., LTD.
    Inventors: Qian Xiao, Bo Jia, Pengwei Zhou, Yongchao Chen
  • Patent number: 11493706
    Abstract: A multi-speed transceiver device includes a chassis having an optical cable connector coupled to a transceiver processor, and an optical waveguide coupling. A data receiving subsystem in the chassis couples the transceiver processor to the optical waveguide coupling, includes data receiving optical waveguides, and transmits first data received from the transceiver processor to the optical waveguide coupling over a number of the data receiving optical waveguides that depends on a first data transmission speed at which the first data was received. A data transmission subsystem in the chassis couples the transceiver processor to the optical waveguide coupling, includes data transmission optical waveguides, and receives second data via the optical waveguide coupling and over a number of the data transmission optical waveguides that depends on a second data transmission speed at which the second data was received, and then transmits that second data to the transceiver processor.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: November 8, 2022
    Assignee: Dell Products L.P.
    Inventors: Maunish Shah, Shree Rathinasamy
  • Patent number: 11489312
    Abstract: An amplified optical link having a fault-protection capability that is based, at least in part, on the ability to selectively and independently power up and down different groups of optical amplifiers within the link. In an example embodiment, the optical link is implemented using an optical fiber cable having an electrical power line and arrays of optical amplifiers connected between successive optical fiber segments to form a plurality of disjoint groups of parallel optical paths between the ends of the optical fiber cable. The electrical power line is operable to selectively power, as a group, the optical amplifiers of at least some of the disjoint groups. In various embodiments, different optical paths can be implemented using different respective strands of a single-core optical fiber, different respective cores of a multi-core optical fiber, and/or different respective sets of spatial modes of a multimode optical fiber.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: November 1, 2022
    Assignee: Nokia of America Corporation
    Inventors: Peter J. Winzer, Ronen Dar, Szilard Zsigmond
  • Patent number: 11487011
    Abstract: An optical aperture system is provided that includes a photonic integrated circuit. The photonic integrated circuit includes a plurality of apertures, a plurality of optical phase shifters coupled to respective apertures of the plurality of apertures, an optical splitter-combiner coupled to the plurality of optical phase shifters, an optical switch coupled to the optical splitter-combiner, a light source coupled to the optical switch, and a photodetector coupled to the optical switch. The optical aperture system further includes a controller configured to execute a first set of instructions to control the plurality of optical phase shifters and the light source in accordance with a first operating mode of a plurality of operating modes of the optical aperture system, and a processor configured to execute a second set of instructions to process an output of the photodetector in accordance with the first operating mode of the optical aperture system.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: November 1, 2022
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Guy Chriqui, Anthony Cecere Klee, Jacob Harris Wirth, Micah Scott Boyd
  • Patent number: 11480737
    Abstract: In the wavelength selective fiber optic switch, an optical fiber with a portion of cladding removed defines a window facilitating access to the radially evanescent field present when optical power is propagating through the optical fiber, defining a first transmission path. The cladding removed optical fiber, a secondary optical waveguide, and a grating structure form a grating assisted coupler. An adjustable positioning fixture changes the relative spacing of the fiber core, grating, and output waveguide between a decoupled position and a coupled position. The switch operates, in the decoupled position, to allow optical power to propagate unperturbed through the first transmission path, including optical power at said optical wavelength, and in the coupled position, to extract and reroute optical power at the optical wavelength to propagate through the second transmission path, while leaving unperturbed other wavelengths propagating through the first transmission path.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: October 25, 2022
    Inventors: Garrett Smith Sylvester, David L. K. Eng, M. Craig Swan
  • Patent number: 11480742
    Abstract: A micro device transfer tool and methods of operation are described. In an embodiment, the micro device transfer tool includes an articulating transfer head assembly capable of six degrees of motion. A miniatured camera assembly may be secured near the point of contact for the articulating transfer head assembly to aid in system alignment. In an embodiment, an encoder system is described for alignment of a micro pick up array and target substrate using complementary concentric grating patterns. In an embodiment a miniaturized position sensor design is described for sensing position of various system components during alignment or pick and place processes.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: October 25, 2022
    Assignee: Apple Inc.
    Inventors: Patrick J. Czarnota, Paul A. Parks, Edmund L. Ma, Wei Wang
  • Patent number: 11480722
    Abstract: This invention relates to an optical expander device with its display device, and a method of light output and image display, including a waveguide plate, the first optical diffractive in-coupling element, the first retrieval unit, the second retrieval unit, the second optical diffractive expander element, the third optical diffractive expander element, and the fourth optical diffractive out-coupling element. The fourth optical diffractive out-coupling element forms part of the first output light (OB4), by diffracting guided light, the third retrieval light (B3a), and the fourth retrieval light (B4a) to the same direction; simultaneously, the fourth optical diffractive out-coupling element diffracts the first direct-through light (B1b) and the second direct-through light (B2b) to the same direction, forming the other part of the first output light (OB4). This device of the present disclosure may greatly improve the uniformity of the intensity distribution of the output light.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: October 25, 2022
    Inventors: Houqiang Jiang, Tapani Kalervo Levola, Yisheng Zhu, Yifan Zhu
  • Patent number: 11474293
    Abstract: A hollow core photonic crystal fiber (PCF) including an outer cladding region and seven hollow tubes surrounded by the outer cladding region. Each of the hollow tubes is fused to the outer cladding to form a ring defining an inner cladding region and a hollow core region surrounded by the inner cladding region. The hollow tubes are not touching each other, but are arranged with distance to adjacent hollow tubes. The hollow tubes each have an average outer diameter d2 and an average inner diameter d1, wherein d1/d2 is equal to or larger than about 0.8, such as equal to or larger than about 0.85, such as equal to or larger than about 0.9. Also, a laser system.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: October 18, 2022
    Assignee: NKT PHOTONICS A/S
    Inventors: Jens Kristian Lyngsøe, Christian Jakobsen, Mattia Michieletto