Patents Examined by Jie Yang
  • Patent number: 10449638
    Abstract: A solder composition of the invention includes: a flux composition containing a component (A) in a form of a rosin-based resin, a component (B) in a form of an activator, a component (C) in a form of a solvent and a component (D) in a form of a thixotropic agent; and a component (E) in a form of a solder powder. The component (C) in a form of the solvent contains a component (C1) in a form of a isobornyl cyclohexanol and a component (C2) in a form of a solvent whose viscosity at 20 degrees C. is 10 mPa·s or less and whose boiling point ranges from 220 degrees C. to 245 degrees C.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: October 22, 2019
    Assignee: TAMURA CORPORATION
    Inventors: Daigo Ichikawa, Ryo Izumi, Mitsuru Iwabuchi, Nobuhiro Yamashita, Kenta Fukuda, Satoshi Okumura, Nobuo Tajima
  • Patent number: 10434611
    Abstract: A tool having a relatively ductile working end for engaging workpieces and a relatively hard non-working portion for driving the tool is disclosed, and a process for making same. The tool is formed with the material in a first state, such as by cold-working, and then only the non-working portion is heat treated to a second state. The working end is thus maintained in the ductile state while the non-working portion is hardened, thus imparting different materials performance characteristics to working end and non-working portion.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: October 8, 2019
    Assignee: Snap-on Incorporated
    Inventor: Daniel M. Eggert
  • Patent number: 10435775
    Abstract: Methods of refining the grain size of titanium and titanium alloys include multiple upset and draw forging. Titanium and titanium alloy workpieces are heated to a workpiece forging temperature within a workpiece forging temperature range in the alpha+beta phase field. The workpiece may comprise a starting cross-sectional dimension. The workpiece is upset forged in the workpiece forging temperature range. After upsetting, the workpiece is multiple pass draw forged in the workpiece forging temperature range. Multiple pass draw forging may comprise incrementally rotating the workpiece in a rotational direction followed by draw forging the workpiece after each incremental rotation. Incrementally rotating and draw forging the workpiece is repeated until the workpiece comprises substantially the same starting cross-sectional dimension.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: October 8, 2019
    Assignee: ATI PROPERTIES LLC
    Inventors: Robin M. Forbes Jones, John V. Mantione, Urban J. DeSouza, Jean-Philippe Thomas, Ramesh S. Minisandram, Richard L. Kennedy, R. Mark Davis
  • Patent number: 10435770
    Abstract: A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels, cast irons, and superalloys; or in reducing Sm2O3 to Sm metal for use in Sm—Co permanent magnets.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: October 8, 2019
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Karl A. Gschneidner, Jr., Frederick A. Schmidt
  • Patent number: 10422042
    Abstract: Methods comprising: (a) providing a coating composition comprising a fluoroacid compound of the general formula (I): XpMqFrOs??(I) wherein each of q and r independently represents an integer of 1 to 10; each of p and s independently represents an integer from 0 to 10; X represents at least one cation selected from the group consisting of hydrogen, ammonium, alkaline earth metals and alkali metals; and M represents at least one element selected from the group consisting of Ti, Zr, Hf, Si, Sn, Al, Ge, and B; (b) contacting a metal substrate with the coating composition; and (c) adding to the coating composition a component selected from the group consisting of fluorine-free compounds of an element M, Group 2 metal compounds, Group 12 metal compounds, Group 13 compounds, Group 14 compounds, and combination thereof.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: September 24, 2019
    Assignee: Henkel AG & Co. KGaA
    Inventors: Bruce H. Goodreau, Jianping Liu, Edis Kapic, Michael Febbraro
  • Patent number: 10407763
    Abstract: The present disclosure provides a carbon steel composition for a reduced thermal strain steering rack bar and a method for manufacturing the carbon steel composition. The carbon steel composition for a steering rack bar includes: iron (Fe) as a main component, about 0.39 to 0.43 wt % of carbon (C), approximately 0.15 to 0.35 wt % of silicon (Si), approximately 0.90 to 1.10 wt % of manganese (Mn), approximately 0.02 to 0.04 wt % of niobium (Nb), and approximately 0.10 to 0.15 wt % of vanadium (V). The method for manufacturing a carbon steel composition for a steering rack bar includes: filling and drawing the carbon steel composition; broaching the filled and drawn carbon steel composition; performing nitriding heat-treatment on a surface of the broached carbon steel composition; and inspecting the nitriding heat-treated carbon steel composition.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: September 10, 2019
    Assignee: HYUNDAI MOTOR COMPANY
    Inventor: Hyun-Kyu Kim
  • Patent number: 10407747
    Abstract: Provided are a cold working tool material with which high hardness can be obtained in a broad range of tempering temperatures, and a cold working tool manufacturing method using same. The present invention is a cold working tool material comprising a steel component composition that contains, in mass %, C: 0.65-2.40%, Cr: 5.0-15.0%, Mo and W alone or combined (Mo+½W): 0.50-4.00%, V: 0.10-1.50%, and N: greater than 0.0300% to 0.0800%, in which martensitic structure can be adjusted by quenching, and in which, in a 90 ?m long 90 ?m wide region of a cross-sectional structure that does not contain carbides with equivalent circle diameters exceeding 5.0 ?m, the number density of carbides A with equivalent circle diameters greater than 0.1 ?m to 2.0 ?m is at least 9.0×105/mm2 and the number density of carbides B with equivalent circle diameters greater than 0.1 ?m to 0.4 ?m is at least 7.5×105/mm2.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: September 10, 2019
    Assignee: HITACHI METALS, LTD.
    Inventors: Tatsuya Shouji, Setsuo Mishima, Yukio Shinji, Katsufumi Kuroda
  • Patent number: 10407759
    Abstract: A corrosion-resistant, hot and cold formable and weldable steel for use in hydrogen-induced technology with high resistance to hydrogen embrittlement has the following composition: 0.01 to 0.4 percent by mass of carbon, ?3.0 percent by mass of silicon, 0.3 to 30 percent by mass of manganese, 10.5 to 30 percent by mass of chromium, 4 to 12.5 percent by mass of nickel, ?1.0 percent by mass of molybdenum, ?0.2 percent by mass of nitrogen, 0.5 to 8.0 percent by mass of aluminum, ?4.0 percent by mass of copper, ?0.1 percent by mass of boron, ?1.0 percent by mass of tungsten, ?5.0 percent by mass of cobalt, ?0.5 percent by mass of tantalum, ?2.0 percent by mass of at least one of the elements: niobium, titanium, vanadium, hafnium and zirconium, ?0.3 percent by mass of at least one of the elements: yttrium, scandium, lanthanum, cerium and neodymium, the remainder being iron and smelting-related steel companion elements.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: September 10, 2019
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Joerg Naumann, Wolfgang Leistner, Werner Theisen, Sebastian Weber, Thorsten Michler, Mauro Martin
  • Patent number: 10392675
    Abstract: There is provided a seamless steel pipe having high strength and high toughness even if having a thick wall. A seamless steel pipe according to the present embodiment consists of: in mass %, C: 0.03 to 0.08%, Si: not more than 0.25%, Mn: 0.3 to 2.0%, P: not more than 0.05%, S: not more than 0.005%, Al: 0.001 to 0.10%, Cr: 0.02 to 1.0%, Ni: 0.02 to 1.0%, Mo: 0.02 to 0.8%, N: 0.002 to 0.008%, Ca: 0.0005 to 0.005%, and Nb: 0.01 to 0.1%, the balance being Fe and impurities, and has a wall thickness of not less than 50 mm.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: August 27, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yukimasa Ueda, Yuji Arai
  • Patent number: 10395879
    Abstract: According to one embodiment, a tungsten alloy includes 0.1 to 5 wt % of Zr in terms of ZrC.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: August 27, 2019
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Shinichi Yamamoto, Kayo Nakano, Hiromichi Horie
  • Patent number: 10385430
    Abstract: The present invention provides a steel material, such as a high-strength spring, that has excellent fatigue properties, and, more specifically, a steel material, such as the high-strength spring, that can improve the fatigue properties in a high-strength region more easily, without increasing an alloy cost. The steel material includes, in percent by mass, C: 0.5 to 1.0%, Si: 1.5 to 2.50%, Mn: 0.5 to 1.50%, P: more than 0% to 0.020% or less, S: more than 0% to 0.020% or less, Cr: more than 0% to 0.2% or less, Al: more than 0% to 0.010% or less, N: more than 0% to 0.0070% or less, and O: more than 0% to 0.0040% or less, and the balance consisting of iron and inevitable impurities, wherein Cr and Si contents satisfy a formula of Cr×Si?0.20, a ratio of tempered martensite in a steel microstructure is 80% or more by area, and a number density of particles of Cr-containing carbide or carbonitride having a circle-equivalent diameter of 50 nm or more in the steel microstructure is 0.10 particles/?m2 or less.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: August 20, 2019
    Assignee: KOBE STEEL, LTD.
    Inventors: Hiroshi Oura, Tomokazu Masuda, Nao Yoshihara, Takayuki Naito, Akito Suzuki
  • Patent number: 10385419
    Abstract: The present invention provides steel sheet products having controlled compositions that are subjected to two-step annealing processes to produce sheet products having desirable microstructures and favorable mechanical properties such as high strength and ultra-high formability. Steels processed in accordance with the present invention exhibit combined ultimate tensile strength and total elongation (UTS·TE) properties of greater than 25,000 MPa-%. Steels with these properties fall into the category of Generation 3 advanced high strength steels, and are highly desired by various industries including automobile manufacturers.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: August 20, 2019
    Assignee: United States Steel Corporation
    Inventors: David Paul Hoydick, Eduardo Augusto Silva, Matthew Michael McCosby
  • Patent number: 10378091
    Abstract: A welded joint is obtained by using a welding material having a composition: Cr: 15.0 to 30.0%; and Ni: 40.0 to 70.0%, including: a base material having a composition: C: 0.03 to 0.075%; Si: 0.6 to 2.0%; Mn: 0.05 to 2.5%; P: up to 0.04%; S: up to 0.015%; Cr: more than 16.0% and less than 23.0%; Ni: not less than 20.0% and less than 30.0%; Cu: 0.5 to 10.0%; Mo: less than 1%; Al: up to 0.15%; N: 0.005 to 0.20%; O: up to 0.02%; Ca: 0 to 0.1%; REM: 0 to 0.15%; V: not less than 0% and less than 0.5%; and Nb: 0 to 2%, a balance being Fe and impurities and a first-layer weld metal including Fe content from 10 to 40%, all % by mass.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: August 13, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kana Jotoku, Hiroyuki Hirata, Yoshitaka Nishiyama, Hirokazu Okada, Shinnosuke Kurihara, Yuhei Suzuki
  • Patent number: 10370736
    Abstract: Provided is a ultrahigh strength steel for a welded structure having superior toughness in a weld heat-affected zone (HAZ) comprising: by wt %, carbon (C): 0.05% to 0.15%, silicon (Si): 0.1% to 0.6%, manganese (Mn): 1.5% to 3.0%, nickel (Ni): 0.1% to 0.5%, molybdenum (Mo): 0.1% to 0.5%, chromium (Cr): 0.1% to 1.0%, copper (Cu): 0.1% to 0.4%, titanium (Ti): 0.005% to 0.1%, niobium (Nb): 0.01% to 0.03%, boron (B): 0.0003% to 0.004%, aluminum (Al): 0.005% to 0.1%, nitrogen (N): 0.001% to 0.006%, phosphorus (P): 0.015% or less, sulfur (S): 0.015% or less, iron (Fe) as a residual component thereof, and inevitable impurities.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: August 6, 2019
    Assignee: POSCO
    Inventors: Hong-Chul Jeong, Ho-Soo Kim
  • Patent number: 10370744
    Abstract: A reinforced magnesium composite, and a method of producing thereof, wherein the reinforced magnesium composite comprises elemental magnesium particles, elemental nickel particles, and one or more ceramic particles with elemental nickel particles being dispersed within elemental magnesium particles without having intermetallic compounds therebetween. Various embodiments of the method of producing the reinforced magnesium composite are also provided.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: August 6, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Syed Fida Hassan, Nasser Al-Aqeeli, Nasirudeen Olalekan Ogunlakin
  • Patent number: 10370751
    Abstract: One embodiment of a method of refining alpha-phase grain size in an alpha-beta titanium alloy comprises working an alpha-beta titanium alloy at a first working temperature within a first temperature range in the alpha-beta phase field of the alpha-beta titanium alloy. The alloy is slow cooled from the first working temperature. On completion of working at and slow cooling from the first working temperature, the alloy comprises a primary globularized alpha-phase particle microstructure. The alloy is worked at a second working temperature within a second temperature range in the alpha-beta phase field. The second working temperature is lower than the first working temperature. The is worked at a third working temperature in a third temperature range in the alpha-beta phase field. The third working temperature is lower than the second working temperature. After working at the third working temperature, the titanium alloy comprises a desired refined alpha-phase grain size.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: August 6, 2019
    Assignee: ATI PROPERTIES LLC
    Inventors: Jean-Phillippe A. Thomas, Ramesh S. Minisandram, Robin M. Forbes Jones, John V. Mantione, David J. Bryan
  • Patent number: 10373764
    Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 6, 2019
    Assignee: Global Advanced Metals USA, Inc.
    Inventors: Ryosuke Matsuoka, Eiji Kataoka, Yoshikazu Noguchi, John Koenitzer, Sridhar Venigalla
  • Patent number: 10370745
    Abstract: A magnesium alloy including about 2 percent by weight to about 8 percent by weight zinc, about 0.1 percent by weight to about 3 percent by weight manganese, about 1 percent by weight to about 6 percent by weight tin, about 0.1 percent by weight to about 4 percent by weight yttrium, and magnesium.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: August 6, 2019
    Assignee: The Boeing Company
    Inventors: Fusheng Pan, Dingfei Zhang, Guangshan Hu, Xia Shen, Jingren Dong, Sensen Chai, Daliang Yu, Fei Guo, Luyao Jiang
  • Patent number: 10358696
    Abstract: A wrought machinable low copper, silicon, zinc alloy having a copper content between about 66 weight percent and about 69 weight percent and wherein the silicon content is between about 1.53 weight percent and about 2.0 weight percent.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: July 23, 2019
    Assignee: CHASE BRASS AND COPPER COMPANY, LLC
    Inventors: David Dean McDevitt, Charles Lawrence Muller
  • Patent number: 10358703
    Abstract: The present disclosure provides a magnesium alloy and a preparation method and an application thereof. Based on the total weight of the magnesium alloy, the magnesium alloy includes 2-3.5 wt % of Ce, 0.01-0.2 wt % of R, 0.8-1.5 wt % of Mn, 0-0.01 wt % of Fe, 0-0.01 wt % of Cu, 0-0.01 wt % of Ni, 0-0.01 wt % of Co, 0-0.01 wt % of Sn, 0-0.01 wt % of Ca, and 94.74-97.19 wt % of Mg, wherein R is at least one selected from Al and Zn.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: July 23, 2019
    Assignee: BYD COMPANY LIMITED
    Inventors: Faliang Zhang, Youping Ren, Qing Gong