Patents Examined by Joannie Adelle García
  • Patent number: 7298019
    Abstract: A MIM capacitor includes a lower electrode disposed on a semiconductor substrate. A dielectric layer is disposed on the lower electrode to completely cover an exposed surface of the lower electrode. An upper electrode is disposed on the dielectric layer. A method for forming a MIM capacitor includes forming a lower electrode on a semiconductor substrate. A dielectric layer and an upper metal layer are formed on an entire surface of the substrate to cover the lower electrode. The dielectric and upper metal layers are patterned on the lower electrode.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: November 20, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Ki Min Lee
  • Patent number: 7273775
    Abstract: According to one exemplary embodiment, a method of fabricating a virtual ground memory array includes forming a number of polysilicon segments on a gate dielectric layer, where the gate dielectric layer is situated on a substrate. The method further includes forming a number of bitlines in the substrate, where each of the bitlines is situated adjacent to at least one of the polysilicon segments, and where the bitlines are formed after the polysilicon segments. The method further includes forming a gap-filling dielectric segment over each of the bitlines. The method can further include removing the masking layer and a portion of the gap-filling dielectric segment, depositing an interpoly dielectric layer on the polysilicon segments and on a remaining portion of the gap-filling dielectric segment, and forming a second polysilicon layer on the interpoly dielectric layer.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: September 25, 2007
    Assignee: Spansion LLC
    Inventor: Hiroyuki Ogawa
  • Patent number: 7268087
    Abstract: In order to provide a manufacturing method of a semiconductor device which can improve the interconnection lifetime, while controlling the increase in resistance thereof, and, in addition, can raise the manufacturing stability; by applying a plasma treatment to the surface of a copper interconnection 17 with a source gas comprising a nitrogen element being used, a copper nitride layer 24 is formed, and thereafter a silicon nitride film 18 is formed. Hereat, under the copper nitride layer 24, a thin copper silicide layer 25 is formed.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: September 11, 2007
    Assignee: NEC Electronics Corporation
    Inventors: Hidemitsu Aoki, Hiroaki Tomimori, Norio Okada, Tatsuya Usami, Koichi Ohto, Takamasa Tanikuni
  • Patent number: 7256060
    Abstract: A poly-silicon liquid crystal display device with an improved aperture ratio and a simplified method of fabricating the same are disclosed. A liquid crystal display device according to the present invention includes first and second substrates; a gate line on the first substrate; a data line crossing the gate line to define a pixel region; a thin film transistor (TFT) near the crossing of the gate and data lines, the TFT having a gate electrode, a source electrode and a drain electrode; a pixel electrode in the pixel region, the pixel electrode having a double-layer structure in which a metal layer is formed on a transparent conductive layer; a black matrix on the second substrate, the black matrix having an aperture portion partially overlapping the pixel electrode and the drain electrode; and a liquid crystal layer between the first and second substrates.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: August 14, 2007
    Assignee: LG.Philips LCD Co., Ltd.
    Inventor: Yong In Park
  • Patent number: 7253114
    Abstract: A method is provided for forming at least three devices with different gate oxide thicknesses and different associated operating voltages, in the same integrated circuit device. The method includes forming a plurality of gate oxides with different thicknesses in high voltage and low voltage areas in the same integrated circuit device. A dry etching operation is used to remove the relatively thick gate oxide from the high voltage area using photoresist masking of the low voltage area and a hard mask in the high voltage area, to mask the gate oxide films. A wet etching procedure is then used to remove the gate oxide film from the low voltage areas. The hard mask may be formed over a polysilicon structure.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: August 7, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chien-Mao Chen, Jun Xiu Liu, Cuker Huang, Chi-Hsuen Chang
  • Patent number: 7250646
    Abstract: There is provided a monolithic three dimensional TFT mask ROM array. The array includes a plurality of device levels. Each of the plurality of device levels contains a first set of enabled TFTs and a second set of partially or totally disabled TFTs.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: July 31, 2007
    Assignee: Sandisk 3D, LLC.
    Inventors: Andrew J. Walker, Christopher Petti
  • Patent number: 7244649
    Abstract: A method for manufacturing a capacitor is disclosed. An etch-stop layer or a polishing stop layer is employed to protect a storage electrode of the capacitor from being damaged by a chemical mechanical polishing process or an etch-back process during its fabrication.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: July 17, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Dong Lee, Chang-Ki Hong, Young-Rae Park
  • Patent number: 7238975
    Abstract: A nonvolatile semiconductor memory device including at least one MOS transistor in a peripheral circuit comprises a semiconductor substrate, isolation insulating films for defining a plurality of element formation regions, each of the isolation insulating films being buried in an isolation trench provided in the semiconductor substrate, a floating gate provided in each of the element formation regions via a first gate insulating film, a control gate provided on the floating gate via a second gate insulating film, and source and drain regions provided in the semiconductor substrate in self-alignment with the control gate, wherein the floating gate is self-aligned at an isolation end in a direction of a channel width, and comprises a plurality of polysilicon films.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: July 3, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroaki Hazama, Seiichi Mori, Hirohisa Iizuka, Norio Ootani, Kazuhito Narita
  • Patent number: 7238566
    Abstract: A method of forming a one-transistor memory cell includes the steps of: forming a dielectric layer over a substrate having a pass-gate formed thereon; forming an opening in the dielectric layer to expose a portion of the substrate at least adjacent to the pass-gate; forming a capacitor dielectric layer on sidewalls of the opening in the dielectric layer and on the exposed portion of the substrate; and forming an electrode layer over the capacitor dielectric layer. A one-transistor memory cell is also disclosed. The one-transistor memory cell has a substrate having a pass-gate formed thereover. A dielectric layer is formed over the pass-gate and the substrate and has an opening exposing a portion of the substrate adjacent to the pass-gate. A capacitor dielectric layer is formed on sidewalls of the opening and on the exposed portion of the substrate. An electrode layer is formed on the capacitor dielectric layer.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: July 3, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Min-Hsiung Chiang
  • Patent number: 7235469
    Abstract: A semiconductor device suitable for the miniaturization and comprising properly controlled Si/SiGe gate electrode comprises an insulator formed on a semiconductor substrate, a first gate electrode formed on the insulator and including silicon-germanium, wherein a germanium concentration is higher near an interface to the insulator and lower in a surface side opposite to the insulator, and a second gate electrode formed on the insulator and including silicon-germanium, wherein a germanium concentration is substantially uniform and an n-type dopant of a concentration of above 6×1020 atoms/cm3 is contained.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: June 26, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasunori Okayama, Kiyotaka Miyano, Kazunari Ishimaru
  • Patent number: 7235452
    Abstract: A method for fabricating a capacitor in a semiconductor device is disclosed.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: June 26, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jae Il Kang, Sang Cheol Kim
  • Patent number: 7229502
    Abstract: A method of forming a silicon nitride layer is provided. A deposition furnace having an outer tube, a wafer boat, a gas injector and a uniform gas injection apparatus is provided. The wafer boat is positioned within the outer tube for carrying a plurality of wafers. The gas injector is positioned between the outer tube and the wafer boat. Similarly, the uniform gas injection apparatus is positioned between the outer tube and the wafer boat. Gas injected into the uniform gas injection apparatus is uniformly distributed throughout the entire deposition furnace. To form a silicon nitride layer on each wafer, a silicon-containing gas is passed into the deposition furnace via the gas injector and a nitrogen-mixed carrier gas is passed into the deposition furnace via the uniform gas injection apparatus.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: June 12, 2007
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Ching-Tang Wang, Chin-Tung Niao, Keng-Hui Su, Huang-Sheng Chiu, Min-Hsin Wang
  • Patent number: 7229895
    Abstract: A method of forming a buried digit line is disclosed. Sacrificial spacers are formed along the sidewalls of an isolation trench, which is then filled with a sacrificial material. One spacer is masked while the other spacer is removed and an etch step into the substrate beneath the removed spacer forms an isolation window. Insulating liners are then formed along the sidewalls of the emptied trench, including into the isolation window. A digit line recess is then formed through the bottom of the trench between the insulating liners, which double as masks to self-align this etch. The digit line recess is then filled with metal and recessed back, with an optional prior insulating element deposited and recessed back in the bottom of the recess.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: June 12, 2007
    Assignee: Micron Technology, Inc
    Inventor: David H. Wells
  • Patent number: 7223688
    Abstract: An apparatus including a volume of phase change material disposed between a first conductor and a second conductor on a substrate, and a plurality of electrodes coupled to the volume of phase change material and the first conductor. A method including introducing, over a first conductor on a substrate, a plurality of electrodes coupled to the first conductor, introducing a phase change material over the plurality of electrodes and in electrical communication with the plurality of electrodes, and introducing a second conductor over the phase change material and coupled to the phase change material.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: May 29, 2007
    Assignee: Ovonyx, Inc.
    Inventors: Tyler A. Lowrey, Manzur Gill
  • Patent number: 7217663
    Abstract: Via hole and trench structures and fabrication methods are disclosed. The structure comprises a conductive layer in a dielectric layer, and a via hole in the dielectric layer for exposing a portion of a surface of the conductive layer. A conductive liner covers the exposed surface of the first conductive layer. A trench is formed on the via hole in the dielectric without the conductive liner layer in the trench. Dual damascene structures and fabrications methods are also disclosed. Following the fabrication methods of the via hole and trench structures, a conductive layer is further formed in the via hole and trench structures.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: May 15, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yi-Chen Huang, Chien Chung Fu, Ming-Hong Hsieh, Hui Ouyang, Yi-Nien Su, Hun-Jan Tao
  • Patent number: 7214564
    Abstract: A film bulk acoustic wave filter assembly includes a film bulk acoustic filter and an RF circuit. The film bulk acoustic filter unit cell includes a plurality of film bulk acoustic wave resonators. The number, area and arrangement of the resonators depend on the characteristics of the filter. In the film bulk acoustic wave filter, a metal layer made by CMOS processes is used as a lower electrode area of the film bulk acoustic wave filter or a suspended chamber. The film bulk acoustic filter can be integrated with the RF circuit using processes such as the CMOS process. It facilitates the integration of active devices, streamlining of system design and simplification of test processes, and has a great influence on the application of RF communication devices and integration of system-system-chip (SOC).
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: May 8, 2007
    Assignee: Chung Shan Institute of Science and Technology
    Inventors: Po-Hsun Sung, Pei-Yen Chen, Yung-Chung Chin, Pei-Zen Chang, Yen-Ming Pang, Chi-Ming Fang, Chun-Li Hou
  • Patent number: 7214621
    Abstract: The invention includes methods of forming devices associated with semiconductor constructions. In exemplary methods, common processing steps are utilized to form fully silicided recessed array access gates and partially silicided periphery transistor gates.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: May 8, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Hasan Nejad, Gordon A. Haller, Thomas Arthur Figura, Ravi Iyer
  • Patent number: 7214629
    Abstract: A semiconductor device has an NMOS portion and a PMOS portion. A first stress layer overlies a first channel to provide a first stress type to the channel and a first modified stress layer is formed from a portion of the first stress layer overlying a second channel. A second stress layer providing a second stress type overlies the first modified stress layer and a second modified stress layer is formed from a portion of the second stress layer overlying the first stress layer.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: May 8, 2007
    Assignee: Xilinx, Inc.
    Inventors: Yuhao Luo, Deepak Kumar Nayak
  • Patent number: 7214582
    Abstract: A semiconductor substrate and a semiconductor circuit formed therein and associated fabrication methods are provided. A multiplicity of depressions with a respective dielectric layer and a capacitor electrode are formed for realizing buried capacitors in a carrier substrate and an actual semiconductor component layer being insulated from the carrier substrate by an insulation layer.
    Type: Grant
    Filed: September 13, 2003
    Date of Patent: May 8, 2007
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Volker Lehmann, Lothar Risoh, Wolfgang Rösner, Michael Specht
  • Patent number: 7211848
    Abstract: The invention relates to a dual masked spacer etch for improved dark current performance in imagers. After deposition of spacer material such as oxide, N-channel regions are first opened for N+ source/drain implant and P-channel regions are then opened for P+ source/drain implant. Prior to the N+ source/drain implant, the wafer receives a patterned first spacer etch. During this first spacer etch, the photosensor region is covered with resist. Prior to the P+ source/drain implant, a masked second spacer etch is performed. Again the photosensor region is protected with photoresist. In such a manner, spacers are formed on the gates of both the N-channel and P-channel transistors but in the photodiode region the spacer insulator remains.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: May 1, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Howard E. Rhodes