Patents Examined by John Chapman, Jr.
  • Patent number: 9557212
    Abstract: In accordance with embodiments of the present disclosure, systems and methods for determining a dynamic effective elastic modulus of a composite slickline or wireline cable are provided. A system for estimating the effective elastic modulus (or change thereof) may include a sensing head assembly, a vibration generator, a pair of pulleys, and an optical-based signal processing assembly. The system may detect a resonant frequency of a section of the composite cable held between the two pulleys and estimate the effective elastic modulus based on the detected resonant frequency variation. Adjustments for weight and length of the cable extending into the wellbore may be made as well to determine the dynamic elastic modulus of the cable. The opto-mechanical integrated system described below may enable real-time elastic modulus determination.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: January 31, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Yinghui Lu, Sean Gregory Thomas
  • Patent number: 9551576
    Abstract: The invention comprises an inertial sensor comprising a frame, a proof mass, a first resonant element, the first resonant element being fixed to the frame and electrostatically coupled to the proof mass, and a second resonant element, the second resonant element being fixed to the frame, adjacent to the first resonant element such that there is substantially no electrostatic coupling between the second resonant element and the proof mass. A coupling is provided between the first resonant element and the second resonant element. A drive means is coupled to the first and second resonant elements for vibrating the first and second resonant elements and a sensor assembly is provided for detecting the amplitude of vibration of at least one of the resonant elements.
    Type: Grant
    Filed: November 22, 2012
    Date of Patent: January 24, 2017
    Assignee: Cambridge Enterprise Limited
    Inventors: Pradyumna Thiruvenkatanathan, Ashwin Seshia
  • Patent number: 9541572
    Abstract: A motion detection device includes: a base on which an electronic component is loaded; and a holder installed on a sporting equipment. A fitting portion where the base and the holder can be attached to and removed from each other is provided. The fitting portion is provided with a recessed part provided on the base or the holder, and a protruding part provided on the other and fitting with the recessed part.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: January 10, 2017
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Tsutomu Taniguchi
  • Patent number: 9534894
    Abstract: In order to provide a resonator element having high production efficiency and low impedance in a small size, the resonator element includes a base portion, and a driving arm which extends from the base portion and includes a through hole, in which the driving arm vibrates along an in-plane direction, and includes a plurality of broad portions of which a width in the in-plane direction is broad and a plurality of narrow portions of which a width in the in-plane direction is narrow which alternate with each other, and the through hole is disposed in the broad portion.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: January 3, 2017
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Fumio Ichikawa
  • Patent number: 9513116
    Abstract: The invention provides a tread thickness measuring method for accurately measuring the tread thickness from a belt surface located in an outermost position in a tire to the tread surface by an ultrasonic measurement irrespective of the material of the belt. The method includes the steps of spraying the same liquid as the liquid pooled in a tank on the tread surface of the tire under inspection before immersing the tread surface in the liquid in the tank and measuring the depth of the belt located in the outermost position in the tire by emitting ultrasonic waves to the tread surface immersed in the liquid in the tank and receiving the reflected waves.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 6, 2016
    Assignee: BRIDGESTONE CORPORATION
    Inventors: Takayuki Fujishima, Ryuji Nawata
  • Patent number: 9494426
    Abstract: A vibratory gyroscope is provided comprising a plurality of secondary pickoff transducers which are each sensitive to the secondary response mode, wherein: at least two of the secondary pickoff transducers comprise skew transducers designed to be sensitive to the primary mode which produce an induced quadrature signal in response thereto. A method of using the gyroscope is provided comprising the steps of arranging electrical connections between the secondary pickoff transducers and a pickoff amplifier so that in use the induced quadrature signal is substantially rejected by the amplifier in the absence of a fault condition, and the amplifier outputs an induced quadrature signal when a fault condition disconnects one of the skew transducers from the amplifier, and a comparator compares the quadrature output from the pickoff amplifier with a predetermined threshold value and provides a fault indication when the predetermined threshold is exceeded.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 15, 2016
    Assignee: Atlantic Inertial Systems Limited
    Inventors: Michael Durston, Takafumi Moriguchi, Ryuta Araki
  • Patent number: 9482687
    Abstract: A device for measuring angle and angular velocity or distance and speed of a moving part is described. The device has a sensor which is or can be arranged in a stationary manner and an encoder which is or can be arranged on the moving part and, together with the sensor, generates a modulation signal to be demodulated by the sensor. For the frequency measurement which is needed to measure the angular velocity/speed, the encoder has a structure which reproduces a periodic pattern and is interrupted by at least one index area for the angle/distance measurement. In the index area, the encoder has a substitute pattern which differs from the periodic pattern by at least one physical variable which can be detected by the sensor but has a structure which also enables the frequency measurement in the index area.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: November 1, 2016
    Assignee: Continental Teves AG & Co. oHG
    Inventor: Heinrich Acker
  • Patent number: 9476905
    Abstract: A sensor element includes: a detection electrode section; a movable body that is provided to face the detection electrode section; and a protruding section that is provided in a region where the detection electrode section is provided in a plan view of the detection electrode section seen in a vertical direction and protrudes toward the movable body. At least a part of a surface of the protruding section is made of an insulating material.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: October 25, 2016
    Assignee: Seiko Epson Corporation
    Inventor: Shigekazu Takagi
  • Patent number: 9476710
    Abstract: Coriolis vibratory gyroscope includes a thin-walled resonator, fastened centrally on a stem located within the resonator; with 4nk holes in a wall of the resonator and arranged around the stem, where “k” is integer, “n” is order of vibration modes, and the angle between adjacent holes is “?/2nk”. The stem is rotationally symmetric and is fastened on a base; electrodes are arranged on the wall for excitation and measurement of vibration modes, with leads passing from the electrodes through the holes; the base has a seating for the resonator stem, and leads pass from the outside of the base through it, the leads being electrically-insulated and sealed relative to the base; the leads which pass through the base are connected to the leads which pass from the electrodes, allowing signals to pass from outside the base, through the base, through the holes in the resonator wall and to the electrodes.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: October 25, 2016
    Assignee: Innalabs Limited
    Inventors: Valery Valerianovich Chikovani, Yurii Alekseevich Yatzenko
  • Patent number: 9476903
    Abstract: An accelerometer, comprises, a measurement mass, a top cap silicon wafer and a bottom cap silicon wafer, which both are coupled with the said measurement mass; the measurement mass comprises a support frame, a mass, and a plurality of resilient beams; the mass and the resilient beams are located within the support frame; the mass and the support frame are connected by several sets of the resilient beams, and each set comprises two resilient folding beams; the resilient folding beams are symmetrically provided with respect to the midline of the mass; a connection beam is provided in between each set of the resilient folding beams to connect the resilient folding beams together. Silicon wafers with electrodes are bonded on the top and bottom surfaces of the measurement mass; and forms a capacitor with the measurement mass. The accelerometer in the present invention has a large mode isolation ratio, and it is symmetrical in high order vibrational modes , which further decreases the noise of the MEMS chip.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: October 25, 2016
    Assignee: Chinese Academy of Sciences Institute of Geology and Geophysics
    Inventors: Du Li Yu, Lian Zhong Yu, Chang Chun Yang
  • Patent number: 9476712
    Abstract: A micro-electro-mechanical systems (MEMS) device comprises at least one proof mass configured to have a first voltage and a motor motion in a first horizontal direction. At least one sense plate is separated from the proof mass by a sense gap, with the sense plate having an inner surface facing the proof mass and a second voltage different than the first voltage. A set of stop structures are on the inner surface of the sense plate and are electrically isolated from the sense plate. The stop structures are configured to prevent contact of the inner surface of the sense plate with the proof mass in a vertical direction. The stop structures have substantially the same voltage as that of the proof mass, and are dimensioned to minimize energy exchange upon contact with the proof mass during a shock or acceleration event.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: October 25, 2016
    Assignee: Honeywell International Inc.
    Inventors: Timothy J. Hanson, Mark W. Weber, Max C. Glenn, Drew A. Karnick
  • Patent number: 9470526
    Abstract: An integrated microelectromechanical structure is provided with: a die, having a substrate and a frame, defining inside it a detection region and having a first side extending along a first axis; a driving mass, anchored to the substrate, set in the detection region, and designed to be rotated in a plane with a movement of actuation about a vertical axis; and a first pair and a second pair of first sensing masses, suspended inside the driving mass via elastic supporting elements so as to be fixed with respect thereto in the movement of actuation and so as to perform a detection movement of rotation out of the plane in response to a first angular velocity; wherein the first sensing masses of the first pair and the first sensing masses of the second pair are aligned in respective directions, having non-zero inclinations of opposite sign with respect to the first axis.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: October 18, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Luca Coronato, Gabriele Cazzaniga, Sarah Zerbini
  • Patent number: 9470660
    Abstract: Described herein is an apparatus for detecting damage in a structure that includes a plurality of first piezoelectric sensing elements arranged in a generally circular shape. The apparatus also includes an annular-shaped second piezoelectric sensing element positioned adjacent the plurality of first piezoelectric sensing elements. One of the plurality of first piezoelectric sensing elements or the annular-shaped second piezoelectric sensing element generates a wave through the structure and other of the plurality of first piezoelectric sensing elements or the annular-shaped second piezoelectric sensing element senses the wave after passing through the structure.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: October 18, 2016
    Assignee: The Boeing Company
    Inventors: James P. Dunne, Jeong-Beom Ihn, Lawrence E. Pado
  • Patent number: 9470525
    Abstract: A gyro sensor includes: a base body; a vibrating body; a driving portion driving the vibrating body in a direction of a first axis; a movable electrode portion displaceable, according to angular velocity about a second axis perpendicular to the first axis, in a direction of a third axis perpendicular to the first axis and the second axis; a first spring portion connected to the vibrating body and a first side surface of the movable electrode portion, the first side surface intersecting the first axis or the second axis; a second spring portion connected to the vibrating body and a second side surface of the movable electrode portion, the second side surface being parallel to the first side surface. The first spring portion and the second spring portion have portions extending in the direction of the first axis and portions extending in a direction of the second axis.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: October 18, 2016
    Assignee: Seiko Epson Corporation
    Inventor: Kei Kanemoto
  • Patent number: 9470703
    Abstract: A physical quantity sensor includes: a substrate; a movable body including, with a first axis as a boundary, a first movable electrode portion disposed in a first region, a second movable electrode portion disposed in a second region, and a damping adjusting portion disposed in at least one of the first region and the second region; beam portions supporting the movable body; a first fixed electrode portion; and a second fixed electrode portion. A first through-hole is disposed in the damping adjusting portion. Second through-holes are disposed in the movable electrode portions. The area of a region where the first movable electrode portion overlaps with the first fixed electrode portion is the same as the area of a region where the second movable electrode portion overlaps with the second fixed electrode portion. The width of the first through-hole is greater than the widths of the second through-holes.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: October 18, 2016
    Assignee: Seiko Epson Corporation
    Inventor: Satoru Tanaka
  • Patent number: 9459100
    Abstract: A gyroscopic sensor includes a vibratory gyroscopic sensor element, first and second drive electrodes positioned proximate to the vibratory gyroscopic sensor element, and a drive circuit operatively connected to the first and second drive electrodes. The drive circuit is configured to generate a stepped sinusoidal waveform having a plurality of steps, each step having a predetermined duration and each step having an output level in a plurality of predetermined output levels for the stepped sinusoidal waveform including at least three positive output levels and at least three negative output levels to generate oscillation of the vibratory gyroscopic sensor element at a predetermined frequency.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: October 4, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Ganesh K. Balachandran, Vladimir P. Petkov
  • Patent number: 9448068
    Abstract: A placing member is configured to be supported from an outside by a terminal electrically connected to a terminal electrode, and an X-axis-direction extended portion, a Y-axis-direction extended portion, and a Z-axis-direction extended portion are provided in the terminal. This configuration provides an angular velocity sensor, in which a problem such that Y-axis-direction and Z-axis-direction vibrations applied from the outside cannot be damped is eliminated, and all the vibrations in three axis directions can be damped.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: September 20, 2016
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takashi Uchida, Toshio Yamazaki, Tomohiro Mitani
  • Patent number: 9448069
    Abstract: Micromachined gyroscopes, such as those based upon microelectromechanical systems (MEMS) have the potential to dominate the rate-sensor market mainly due to their small size, low power and low cost. As MEMS gyroscopes are resonant devices requiring active excitation it would be beneficial to improve the resonator Q-factor reducing the electrical drive power requirements for the excitation circuitry. Further, many prior art MEMS gyroscope designs have multiple resonances arising from design and manufacturing considerations which require additional frequency tuning and control circuitry together with the excitation/sense circuitry. It would therefore be beneficial to enhance the bandwidth of the resonators to remove the requirement for such circuitry. Further, to address the relatively large dimensions of MEMS gyroscopes it would be beneficial for the MEMS gyroscopes to be fabricated directly above the CMOS electronics thereby reducing the die dimensions and lowering per die cost.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: September 20, 2016
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Mourad El-Gamal, Mohannad Elsayed, Paul-Vahe Cicek, Frederic Nabki
  • Patent number: 9448251
    Abstract: An integrated inertial sensor and pressure sensor may include a first substrate including a first surface and a second surface; at least one or more conductive layers, formed on the first surface of the first substrate; a movable sensitive element, formed by using a first region of the first substrate; a second substrate and a third substrate, the second substrate being coupled to a surface of the conductive layer, the third substrate being coupled to the second surface of the first substrate in which the movable sensitive element of the inertial sensor is formed, and the third substrate and the second substrate are respectively arranged on opposite sides of the movable sensitive element; and a sensitive film of the pressure sensor, including at least a second region of the first substrate, or including at least one of the conductive layers on the second region of the first substrate.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: September 20, 2016
    Assignee: MEMSEN ELECTRONICS INC
    Inventor: Lianjun Liu
  • Patent number: 9448070
    Abstract: Gyrometer including a substrate and an inertial mass suspended above the substrate, the inertial mass including an excitation part and a detection part, means of moving the excitation part is movable in at least one direction contained in the plane of the inertial mass, and capacitive detection device detecting movement of the detection part outside the plane of the mass. The capacitive detection device includes comprising at least one suspended electrode, located above the detection part located facing the substrate so as to form a variable capacitor with the detection part, the electrode being held above the detection part by at least one pillar passing through the inertial mass.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 20, 2016
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Arnaud Walther, Bernard Diem, Philippe Robert, Jerome Willemin