Patents Examined by John Chapman, Jr.
  • Patent number: 9228888
    Abstract: An ultrasonic sensor assembly for testing a pipe includes a first and second transducer rings attached to the pipe and spaced apart along a length of the pipe. The first transducer ring includes a plurality of transmitters for transmitting a wave, such as a non-dispersive guided wave. The first transducer ring transmits the wave along the pipe. The second transducer ring includes a plurality of receivers for receiving the wave. A relative position of the first transducer ring with respect to a circumferential position of the second transducer ring is determined based on characteristics of the wave received by the second transducer ring. A method of positioning the ultrasonic sensor assembly on the pipe is also provided.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: January 5, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Wei Luo, James Norman Barshinger, Debasish Mishra, Anusha Rammohan
  • Patent number: 9222775
    Abstract: A vibrator element includes a base section, a driving vibrating arm extending from one end of the base section, a detecting vibrating arm extending from another end of the base section opposite to the one end, an adjusting vibrating arm extending from the base section on an opposite side to the driving vibrating arm, and a support section extending from the base section and to be fixed to a substrate, and an output signal of the adjusting vibrating arm has a reverse phase with respect to an output signal of a leakage vibration of the detecting vibrating arm.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: December 29, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Keiji Nakagawa
  • Patent number: 9217664
    Abstract: A vibrating meter is provided. The vibrating meter includes one or more conduits formed from a first material. The vibrating meter further includes a driver coupled to a conduit of the one or more conduits and configured to vibrate at least a portion of the conduit at one or more drive frequencies and one or more pick-offs coupled to a conduit of the one or more conduits and configured to detect a motion of the vibrating portion of the conduit. The vibrating meter further includes a case enclosing at least a portion of the one or more conduits, the driver and the one or more pick-offs. The case is formed from a second material comprising a higher vibrational damping characteristic than the first material.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: December 22, 2015
    Assignee: Micro Motion, Inc.
    Inventors: Gregory Treat Lanham, Christopher A. Werbach, Anthony William Pankratz
  • Patent number: 9207254
    Abstract: The invention relates to a microelectro-mechanical structure (MEMS), and more particularly, to systems, devices and methods of compensating effect of thermo-mechanical stress on a micro-machined accelerometer by incorporating and adjusting elastic elements to couple corresponding sensing electrodes. The sensing electrodes comprise moveable electrodes and stationary electrodes that are respectively coupled on a proof mass and a substrate. At least one elastic element is incorporated into a coupling structure that couples two stationary electrodes or couples a stationary electrode to at least one anchor. More than one elastic element may be incorporated. The number, locations, configurations and geometries of the elastic elements are adjusted to compensate an output offset and a sensitivity drift that are induced by the thermo-mechanical stress accumulated in the MEMS device.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: December 8, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Barbara Simoni, Luca Coronato, Gabriele Cazzaniga
  • Patent number: 9200976
    Abstract: A wheel servicing machine such as a wheel balancer includes an acoustic transducer configured to measure energy of one or more reflected acoustic waves after the waves have bounced off a material boundary surface such as a wheel assembly. In some embodiments, a return energy index signal representative of the measured energy is generated by a transducer and is further processed by a processor to control operations of the machine. The acoustic transducer also measures distance between the transducer and the wheel assembly surface in some embodiments. One or more values in a sample queue of acquired distance data may be flagged, or indexed, based on variation in the magnitude of the return energy signal. Methods of measuring wheel width using sonar measurement of both distance and reflected energy are also provided.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: December 1, 2015
    Inventors: Xin Ye, Matthew Weis, Rhonda White
  • Patent number: 9200945
    Abstract: Embodiments of the present invention provide a method for non-contact detection techniques of mechanical vibrations utilizing a radio frequency system incorporating multiple carrier wavelengths. The new detection method measures multiple harmonic pairs at a carrier frequency and improves the detection accuracy and reliability by first inspecting the Bessel function coefficient of each harmonic and then determining the harmonic amplitude. The original mechanical vibration can then be reconstructed. Embodiments can be used to realize sensing of complex non-sinusoidal vibrations using a wavelength division sensing technique and allow non-contact detection through walls, smoke, fog or other low visibility environments with the advantage of longer range detection and easy integration at a low cost.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: December 1, 2015
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Jenshan Lin, Yan Yan, Changzhi Li
  • Patent number: 9188559
    Abstract: The invention relates to a test method for nozzles composed of ceramic or ceramic-like materials, in which the following method steps are carried out: transfer of ultrasonic vibration to the nozzle by means of a sonotrode placed against the nozzle and thermographic evaluation of the heat evolved in a wall of the nozzle.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 17, 2015
    Assignee: LECHLER GMBH
    Inventor: Juergen Speier
  • Patent number: 9188567
    Abstract: A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: November 17, 2015
    Assignee: BWXT Technical Services Group, Inc.
    Inventors: Daniel T. MacLauchlan, Bradley E. Cox
  • Patent number: 9188429
    Abstract: A method and an apparatus for determining rotary angle related measurement data of a body mounted rotatable about an axis of rotation, the body being a vehicle wheel or a part of a vehicle wheel, in particular a tire or a rim, the method comprising the steps of obtaining measurement data comprising a plurality of measurement data elements of the rotating body together with respective measuring times, determining at least one rotational speed or revolution period of the body for at least one point in time, and associating the obtained measurement data elements to respective rotary angles of the body based on the respective measuring times and the at least one rotational speed or revolution period of the body.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: November 17, 2015
    Assignee: SNAP-ON EQUIPMENT SRL A UNICO SOCIO
    Inventor: Francesco Braghiroli
  • Patent number: 9190937
    Abstract: A MEMS device (20) includes a movable element (20) suspended above a substrate (22) by a spring member (34) having a spring constant (104). A spring softening voltage (58) is applied to electrodes (24, 26) facing the movable element (20) during a powered mode (100) to decrease the stiffness of the spring member (34) and thereby increase the sensitivity of the movable element (32) to an input stimulus (46). Upon detection of a stiction condition (112), the spring softening voltage (58) is effectively removed to enable recovery of the movable element (32) from the stiction condition (112). A higher mechanical spring constant (104) yields a stiffer spring (34) having a larger restoring force (122) in the unpowered mode (96) in order to enable recovery from the stiction condition (112). A feedback voltage (56) can be applied to feedback electrodes (28, 30) facing the movable element (32) to provide electrical damping.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: November 17, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Yizhen Lin, Andrew C. McNeil, Mark E. Schlarmann
  • Patent number: 9176158
    Abstract: An inertial sensor is described that has a commanded test function. The sensor is of a ring type driven by a driver circuit, the sensor further includes primary and secondary portions having corresponding signal pickoffs. The primary pickoff signal amplitude is controlled via an automatic gain control, the primary phase lock loop and VCO locks to the resonant frequency to provide the clocks for the synchronous detectors, the primary pickoff signals via the primary phase shift circuit is provided to the primary driver, the secondary pickoff signal being input into a detector circuit capable of detecting motion in the sensor. The commanded test function includes a signal derived from the primary portion of the circuit and input into the two inputs of a differential amplifier in the secondary pickoff detector circuit.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 3, 2015
    Assignee: SILICON SENSING SYSTEMS LIMITED
    Inventors: Kevin Townsend, Michael Durston, Douglas Robert Sitch
  • Patent number: 9170186
    Abstract: Systems, methods, and devices are provided for manipulating objects in a liquid using a pulsed acoustic field that is modulated in amplitude. The amplitude modulated pulsed acoustic field may form the objects into a layer or layers. The objects may be colloidal objects having an average size of about 50 nm to about 5 ?m, or a mixture of colloidal and non-colloidal objects.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: October 27, 2015
    Assignees: Centre National De La Recherche Scientifique, Ecole Superieure De Physique Et De Chimie Industrielles De La Ville De Paris
    Inventors: Mauricio Hoyos, Luz Angélica Castro Camacho
  • Patent number: 9157928
    Abstract: A microelectronic device tester has a mounting member (for mounting a device), a drive shaft connected to the mounting member, and a vibration shaft mechanically in communication with the drive shaft. The drive shaft and vibration shaft are non-coaxial, and the drive shaft has a drive shaft proximal end and a drive shaft distal end. The drive shaft proximal end is connected to the mounting member, and the drive shaft distal end terminates proximal of the entire vibration shaft.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: October 13, 2015
    Assignee: Analog Devices, Inc.
    Inventors: Wei Chen, Huy Khanh Tang
  • Patent number: 9146266
    Abstract: A system for monitoring equipment and transmitting data and/or signals from one or more satellite nodes to a base node for transmission to a monitor or controller for the equipment. The system may transmit high frequency acoustic signals from one or more satellite nodes embedded in the equipment through a structural component of the equipment to the base node, eliminating the need to hardwire the satellite nodes in harsh environments.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: September 29, 2015
    Assignee: General Electric Company
    Inventor: Vivek Venugopal Badami
  • Patent number: 9146253
    Abstract: An acceleration sensor and an angular velocity sensor are sealed in respective pressure atmospheres suitable therefor in the process of a series of bonding steps, thereby improving the detection sensibilities of the sensors. A movable member 111 of an acceleration sensor 11 and a vibrator 121 of an angular velocity sensor 12 are fabricated on the same sensor wafer 10 with a wall 16 interposed therebetween. A cap wafer 20 is formed in which gaps 21, 22 corresponding to the movable member 111 of the acceleration sensor 11 and the vibrator 121 of the angular velocity sensor 12 are provided. Bumps 23 are disposed near the gap 22 of the angular velocity sensor 12. The acceleration sensor 11 is sealed at atmospheric pressure. Then, the angular velocity sensor 12 is subjected to high temperature and a high-load and is vacuum-sealed. Thereafter, cutting with a diamond grindstone and mounting of circuit substrates and a wiring substrate are performed to form a combined sensor.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: September 29, 2015
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Takanori Aono, Kengo Suzuki, Akira Koide, Masahide Hayashi
  • Patent number: 9134278
    Abstract: Method for testing a pipe for carrying hydrocarbons. The pipe has at least one internal sealing sheath made of polymer material, incorporating elements of reactive compound capable of reacting with corrosive gases contained in the hydrocarbons which diffuse radially through the sheath. The reaction forms a first layer, extending radially from the internal surface, in which the elements of reactive compound have reacted with the gases. A second layer, extends between the first layer and the external surface, in which the elements of reactive compound have not yet reacted with the gases. The method uses ultrasound to determine the position of an interface between the first and second layers to measure the progression of the diffusion of the gases through the sheath.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: September 15, 2015
    Assignees: Technip FRANCE, IFP ENERGIES NOUVELLES
    Inventors: Marie-Hélène Klopffer, Xavier Lefebvre, Yann Nicolas, Patrice Jung
  • Patent number: 9134280
    Abstract: NDT inspection of an austenitic weld between two CRA Clad pipes using a phased ultrasonic transducer array system is described. The method may be performed during laying of gas/oil fatigue sensitive pipelines, for example, at sea. Two types of UT inspection may be generated simultaneously by a Phased Array on each side (Upstream and Downstream) of a girth weld. Firstly, mode converted longitudinal waves are used. These waves have properties that they propagate well. Shear waves are also used. The combination of these two ultrasonic waves, with the addition of surface waves, enables 100% of the girth weld to be inspected to the standard required in fatigue sensitive welds, such as Steel Catenary Risers. Shear waves and compression waves are emitted substantially contemporaneously. Defects may be detected and measured using time of flight information and amplitudes of radiation detected on reflection and on diffraction from the defect.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: September 15, 2015
    Assignee: SAIPEM S.P.A.
    Inventors: Giuseppina Cataldo, Olivier Diligent
  • Patent number: 9128027
    Abstract: An apparatus for detecting inhomogeneities in panels (1), of the type suitable to be used for panels (1) in transit along a processing line and comprising a plurality of sound wave emitting devices (2), operating from one side of the panel (1) in transit, and a plurality of sound wave receiving devices (3), operating from the opposite side of the same panel (1) at a pre-established distance from the emitting device (2). The receiving devices (3) are situated at the ends of a plurality of channels (30), which are disposed in alignment with the respective emitting devices (2), are set side by side at a short distance from one another and have their other ends near to said panels (1); each of said channels (30) being formed in an external structure consisting of a set of partitions or layers (31) placed one on top of the other successively at pre-established distances.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: September 8, 2015
    Assignee: IMAL S.R.L.
    Inventor: Paolo Benedetti
  • Patent number: 9130147
    Abstract: A vibrating reed includes a base part. A drive vibrating arm, a detection vibrating arm, and an adjustment vibrating arm extend from the base part. A first adjustment electrode and a second adjustment electrode are connected to the adjustment vibrating arm. The first adjustment electrode generates an electrical signal in first phase. The second adjustment electrode generates an electrical signal in second phase opposite to the first phase. The electrical signals of the adjustment electrodes are superimposed on the detection signal of the detection vibrating arm, and thereby, vibration leakage components are cancelled out. The adjustment vibrating arm is partially sandwiched between a first electrode piece and a second electrode piece, and the adjustment vibrating arm is partially sandwiched between a third electrode piece and a fourth electrode piece.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: September 8, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Ryuta Nishizawa, Keiji Nakagawa
  • Patent number: 9127680
    Abstract: The magnetic balance is verified of a magnetically-levitated impeller of a centrifugal pump with a pump housing having levitation magnets. The impeller includes embedded magnets and is movable within a chamber in the pump housing between first and second sides of the chamber. The centrifugal pump is mounted on an acceleration fixture while the impeller is held against a predetermined one of the first and second sides by the levitation magnets. A plurality of predetermined accelerations are applied to the acceleration fixture to exert a plurality of different forces of acceleration on the impeller. A determination is made whether the impeller detaches from the predetermined side as a result of each different force of acceleration to identify adjacent forces for which a transition occurs between detaching and not detaching. The transition is compared with a desired retention force to determine whether the pump achieves magnetic balance.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: September 8, 2015
    Assignee: Thoratec Corporation
    Inventors: Masamichi Yanai, Jason C. Nanna