Patents Examined by John Hevey
  • Patent number: 10704118
    Abstract: A predetermined composition is had, when a C content is represented by (C %), in a case of (C %) being not less than 0.35% nor more than 0.65%, a volume fraction of pearlite is 64×(C %)+52% or more, and in a case of (C %) being greater than 0.65% and 0.85% or less, the volume fraction of pearlite is not less than 94% nor more than 100%, and a structure of the other portion is composed of one or two of proeutectoid ferrite and bainite. Further, in a region to a depth of 1.0 mm from a surface, a volume fraction of pearlite block having an aspect ratio of 2.0 or more is not less than 70% nor more than 95%, and a volume fraction of pearlite having an angle between an axial direction and a lamellar direction on a cross section parallel to the axial direction of 40° or less is 60% or more with respect to all pearlite.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 7, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Makoto Okonogi, Shingo Yamasaki, Akifumi Kawana, Hideaki Gotohda
  • Patent number: 10697303
    Abstract: An airfoiled component comprises: a root section, an airfoil section, a damper pocket enclosed within a portion of the airfoil section, and a damper. The airfoil section includes a suction sidewall and a pressure sidewall each extending chordwise between a leading edge and a trailing edge, and extending spanwise between the root section and an airfoil tip. The damper includes a fixed end unified with a damper mounting surface, and a free end extending into the damper pocket from the damper mounting surface.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: June 30, 2020
    Assignee: United Technologies Corporation
    Inventors: Ken F. Blaney, Richard K. Hayford
  • Patent number: 10697039
    Abstract: Provided are a high-strength steel sheet and a method for manufacturing the steel sheet. The high-strength steel sheet has a specified chemical composition with the balance being Fe and inevitable impurities, a microstructure including, in terms of area ratio, 25% or less of a ferrite phase, 75% or more of a bainite phase and/or a martensite phase, and 5% or less of cementite, in which, in a surface layer that is a region within 50 ?m from the surface in the thickness direction, the area ratio of a ferrite phase is 5% to 20%, and a tensile strength is 1180 MPa or more.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: June 30, 2020
    Assignee: JFE Steel Corporation
    Inventors: Nobusuke Kariya, Yoshihiko Ono, Yoshimasa Funakawa, Kazuma Mori, Reiko Sugihara, Kenji Kawamura
  • Patent number: 10683567
    Abstract: This spheroidal graphite or flake graphite cast-iron alloy in weight % comprises the following elements: Carbon (C) between 1.2% and 3.5%, Silicon (Si) between 1.0% or 1.2% and 3%, Nickel (Ni) between 26% and 31%, Cobalt (Co) between 15% and 20%, the remainder being Iron and inevitable impurities. Application to the production of tooling.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: June 16, 2020
    Assignee: FERRY CAPITAIN
    Inventor: Jean-Baptiste Prunier
  • Patent number: 10665462
    Abstract: A first copper alloy sputtering target comprising 0.5 to 4.0 wt % of Al and 0.5 wtppm or less of Si and a second copper alloy sputtering target comprising 0.5 to 4.0 wt % of Sn and 0.5 wtppm or less of Mn are disclosed. The first and/or the second alloy sputtering target can further comprise one or more elements selected from among Sb, Zr, Ti, Cr, Ag, Au, Cd, In and As in a total amount of 1.0 wtppm or less. A semiconductor element wiring formed by the use of the above targets is also disclosed. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: May 26, 2020
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Patent number: 10661344
    Abstract: An Fe-based sintered alloy, essentially consists of, in percentage by mass, Mn: 0.5 to 2.0, Mo: 0.3 to 1.6, Cu: 0.4 to 1.5, C: 0.4 to 0.7 and the balance of Fe plus unavoidable impurities; and has a metallic structure made of 5 to 70% of martensite phase relative to a base material except pore and 25 to 90% of bainite phase relative to the base material except the pore.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: May 26, 2020
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Hiroshi Ohmori, Yuji Yamanishi
  • Patent number: 10662495
    Abstract: Disclosed is a high-strength steel sheet having a tensile strength (TS) of 780 MPa or more and excellent in ductility, fatigue properties, stretch flangeability, surface characteristics, and sheet passage ability that can be obtained by providing a predetermined chemical composition and a steel microstructure that contains, by area, 20-50% of ferrite, 5-25% of bainitic ferrite, 1-10% of martensite, and 5-15% of tempered martensite, and that contains, by volume, 10% or more of retained austenite, in which the retained austenite has a mean grain size of 2 ?m or less, a mean Mn content in the retained austenite in mass % is at least 1.2 times the Mn content in the steel sheet in mass %, the retained austenite has a mean free path of 1.2 ?m or less, and the tempered martensite has a mean free path of 1.2 ?m or less.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: May 26, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Hiroshi Matsuda, Kazunori Tahara, Takeshi Yokota, Kaneharu Okuda, Kazuhiro Seto
  • Patent number: 10662510
    Abstract: A ductile iron composition including, by weight: about 3.1% to about 3.6% C; about 3.5% to about 4.0% Si; about 0.035% to about 0.050% Mg; about 0.001% to about 0.004% Ce; up to about 0.005% Sb; about 0.008% to about 0.016% S; up to about 0.04% P; up to about 0.3% Mn; and balance iron and incidental impurities; The ductile iron composition includes a ratio of Sb/Ce greater than or equal to about 1.25, has a ferritic microstructure and graphite nodules, and greater than about 65% of the graphite nodules having a highly spherical geometry. A method and apparatus for forming a ductile iron composition are also disclosed.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: May 26, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Junyoung Park, Brian Victor Moore
  • Patent number: 10662509
    Abstract: A method for making covetic metal-carbon composites or compositions by electron beam melt heating under vacuum (pressure <10?3 Torr) is described herein. This fabrication method is advantageous, in that it provides oxygen-free covetic materials in a process that allows precise control of the composition of the covetic material to be produced. The method described herein also can be applied to produce multi-element-carbon composites within a metal or alloy matrix, including high melting temperature materials such as ceramic particles or prefabricated nano- or micro-structures, such as carbon nanotubes or graphene compounds. The covetic reaction between metal and carbon takes place under the influence of flowing electrons through the melted metal-carbon precursor. This process creates strong bonding between nanocarbon structure and the metal elements in the melt.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 26, 2020
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Uthamalingam Balachandran, Beihai Ma, Stephen E. Dorris
  • Patent number: 10662515
    Abstract: A copper alloy sheet material includes 0.5 to 2.5 mass % of Ni, 0.5 to 2.5 mass % of Co, 0.30 to 1.2 mass % of Si and 0.0 to 0.5 mass % of Cr and the balance Cu and unavoidable impurities, wherein an X-ray diffraction intensity ratio is 1.0?I{200}/I0{200}?5.0 when I{200} is a result of the X-ray diffraction intensity of {200} crystal plane of sheet surface and I0{200} is a result of the X-ray diffraction intensity of {200} crystal plane of a standard powder of pure copper, and wherein 0.2% yield strength in a rolling parallel direction (RD) is 800 MPa or more and 950 MPa or less, an electrical conductivity of 43.5% IACS or more and 53.0% IACS or less, 180 degree bending workability in a rolling parallel direction (GW) and a rolling perpendicular direction (BW) is R/t=0, and a difference between the rolling parallel direction (RD) and a rolling perpendicular direction (TD) of the 0.2% yield strength is 40 MPa or less.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: May 26, 2020
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Kei Saegusa
  • Patent number: 10662507
    Abstract: A method for producing a thermoelectric material, comprising: mixing an Sn powder and a powder containing a first dopant element to obtain a first mixed raw material, heating the first mixed raw material at a temperature allowing for mutual diffusion of Sn and the first dopant element to obtain a first aggregate, pulverizing the first aggregate to obtain a first powder, mixing an Mg powder, an Si powder, and the first powder to obtain a second mixed raw material, heating the second mixed raw material at a temperature allowing for mutual diffusion of Mg, Si, Sn and the first dopant element to obtain a second aggregate, pulverizing the second aggregate to obtain a second powder, and pressure-sintering the second powder, and wherein the first dopant element is one or more elements selected from Al, Ag, As, Bi, Cu, Sb, Zn, P, and B.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: May 26, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hidenari Yamamoto, Hiroyuki Suto
  • Patent number: 10662496
    Abstract: Disclosed is a high-strength steel sheet having a tensile strength (TS) of 780 MPa or more and excellent in ductility, fatigue properties, balance between high strength and ductility, surface characteristics, and sheet passage ability that can be obtained by providing a predetermined chemical composition and a steel microstructure that contains, by area, 20-50% of ferrite, 5-25% of bainitic ferrite, and 5-20% of martensite, and that contains, by volume, 10% or more of retained austenite, in which the retained austenite has a mean grain size of 2 ?m or less, a mean Mn content in the retained austenite in mass % is at least 1.2 times the Mn content in the steel sheet in mass %, and the retained austenite has a mean free path of 1.2 ?m or less.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: May 26, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Hiroshi Matsuda, Kazunori Tahara, Takeshi Yokota, Kaneharu Okuda, Kazuhiro Seto
  • Patent number: 10557184
    Abstract: A method for manufacturing a copper alloy according to the present invention comprises (a) weighing a copper powder and one of a Cu—Zr master alloy and a ZrH2 powder such that an alloy composition of Cu-xZr (x is the atomic % of Zr, and 0.5?x?8.6 is satisfied) is obtained and pulverizing and mixing the copper powder and the one of the Cu—Zr master alloy and the ZrH2 powder in an inert atmosphere until an average particle diameter D50 falls within the range of from 1 ?m to 500 ?m to thereby obtain a powder mixture; and (b) subjecting the powder mixture to spark plasma sintering by holding the powder mixture at a prescribed temperature lower than eutectic temperature while the powder mixture is pressurized at a pressure within a prescribed range.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: February 11, 2020
    Assignees: NGK Insulators, Ltd., Tohoku University
    Inventors: Takashi Goto, Hirokazu Katsui, Naokuni Muramatsu, Masaaki Akaiwa
  • Patent number: 10544477
    Abstract: A method for manufacturing a high-strength galvanized steel sheet includes performing hot rolling, cold rolling, first annealing, pickling, and second annealing. The first annealing is performed to obtain a steel sheet having a steel microstructure including ferrite in an amount of 10% or more and 60% or less in terms of area ratio, and martensite, bainite, and retained austenite in a total amount of 40% or more and 90% or less in terms of area ratio. The second annealing includes heating to an annealing temperature of 750° C. or higher and 850° C. or lower, holding at the annealing temperature for 10 seconds or more and 500 seconds or less, cooling at an average cooling rate of 1° C./s or more and 15° C./s or less, performing a galvanizing treatment, and cooling to a temperature of 150° C. or lower at an average cooling rate of 5° C./s or more and 100° C./s or less.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: January 28, 2020
    Assignee: JFE Steel Corporation
    Inventors: Hideyuki Kimura, Koichiro Fujita, Hiroshi Hasegawa, Mai Aoyama
  • Patent number: 10507520
    Abstract: Processes are provided that include providing a copper-manganese alloy containing copper and manganese and having an amount of manganese that is at least 32 weight percent and not more than 40 weight percent of a combined total amount of the copper and manganese in the copper-manganese alloy, and casting the copper-manganese alloy by multidirectional solidification to produce a product in the form of a casting. The copper-manganese alloy has a composition sufficiently near the congruent melting point of the Cu—Mn alloy system to sufficiently avoid dendritic growth during the multidirectional solidification of the copper-manganese alloy to avoid the formation of microporosity attributable to dendritic growth. The product has a cast microstructure having a cellular and/or planar solidification structure free of dendritic growth and having multidirectional columnar grains.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: December 17, 2019
    Assignee: Purdue Research Foundation
    Inventor: Kevin Paul Trumble
  • Patent number: 10508322
    Abstract: The invention relates to a copper alloy such as, for example, CuNi6Sn5Fe2P0.15, which has hard particles such as, for example, Fe3P or Fe2P and optionally solid lubricants such as, for example, hexagonal boron nitrides or graphite. The invention further relates to the use of said copper alloy for a bearing and to a bearing having said copper alloy. The invention further relates to a method for producing a bearing having a copper alloy, wherein a metal powder is produced, for example, by means of melt atomization, hard particles and optional solid lubricants are optionally added to said powder, and the powder is sintered onto a substrate. Finally, the invention relates to an alternative method for producing a bearing, wherein the copper alloy is applied to a substrate by means of casting or plating or wherein the bearing is made completely of the copper alloy.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: December 17, 2019
    Assignee: Federal-Mogul Wiesbaden GmbH
    Inventors: Holger Schmitt, Daniel Meister, David M. Saxton
  • Patent number: 10490367
    Abstract: It is a method for manufacturing an electrode material containing Cu, Cr, a heat-resistant element, and a low melting metal. A Cr powder and a heat-resistant element powder are mixed together in a ratio such that the Cr is greater than the heat-resistant element by weight. The mixed powder of the heat-resistant element and the Cr powder is baked. A MoCr solid solution obtained by the baking and containing a solid solution of the heat-resistant element and the Cr is pulverized and then classified. The classified MoCr solid solution powder, a Cu powder, and a low-melting metal powder are mixed together, followed by sintering at a temperature that is 1010° C. or higher and is lower than 1038° C., thereby obtaining the electrode material.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: November 26, 2019
    Assignee: MEIDENSHA CORPORATION
    Inventors: Shota Hayashi, Keita Ishikawa, Kenta Yamamura, Kosuke Hasegawa
  • Patent number: 10464131
    Abstract: Successive layers of a wall of a part are deposited to form a first access channel extending from an exterior of the part to an interior of the part, as well as to form a distribution channel connecting an interior volume of the honeycomb infill to the first access channel. A binder matrix retaining sinterable powder is debound by flowing a debinding fluid through the first access channel and the distribution channel within the interior volume of the honeycomb infill.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: November 5, 2019
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10468168
    Abstract: Disclosed is a Ho and W-containing rare-earth magnet. The rare-earth magnet comprises a R2Fe14B type principal phase, and comprises the following raw material components: R: 28 wt % to 33 wt %, wherein R is a raw-earth element comprising Nd and Ho, and the content of Ho is 0.3 wt % to 5 wt %; B: 0.8 wt % to 1.3 wt %; W: 0.005 wt % to 0.3 wt %, and the balance of T and inevitable purities, wherein T is an element mainly comprising Fe and/or Co. The rare-earth magnet mainly consists of a W-rich grain boundary phase and a Ho-rich principal phase; crystal grain growth of the Ho-containing magnet in a sintering process is constrained by the trace of W, thereby preventing AGG from occurring on the Ho-containing magnet, and obtaining a magnet with high coercivity and high heat resistance.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: November 5, 2019
    Assignees: XIAMEN TUNGSTEN CO., LTD., FUJIAN CHANGTING GOLDEN DRAGON RARE-EARTH CO., LTD
    Inventors: Hiroshi Nagata, Jianhong Zhang
  • Patent number: 10456833
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: October 29, 2019
    Assignee: Desktop Metals, Inc.
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart