Patents Examined by John N. Greaves
  • Patent number: 5415831
    Abstract: The method serves to produce a material based on a doped intermetallic compound. In carrying out the method, at least two differently doped powders each based on the intermetallic compound are selected. One of the two powders predominantly has coarse-grained particles. On the other hand, another powder is formed from comparatively fine-grained particles composed of a material having a lower creep strength but a higher ductility than the material of the coarse-grained powder. The at least two powders are mixed with one another in a ratio serving to establish a desired mixed microstructure and then hot-compacted and heat-treated to form the material.Material produced by this method is suitable for components which are exposed to high mechanical loads at high temperatures, such as, in particular, gas-turbine blades or turbine wheels of turbo chargers.
    Type: Grant
    Filed: December 13, 1993
    Date of Patent: May 16, 1995
    Assignee: ABB Research Ltd.
    Inventors: Robert Baumann, Joachim Rosler, Christoph Tonnes
  • Patent number: 5413753
    Abstract: Methods of forming composite articles of superconducting materials and metal at ambient temperature by applying a mixture of metal and binder to a ceramic oxide preform to yield a coated preform which is then heat treated to provide composite articles of superconducting ceramic and metal.
    Type: Grant
    Filed: September 17, 1993
    Date of Patent: May 9, 1995
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: George E. Zahr
  • Patent number: 5409662
    Abstract: Disclosed is a method and an apparatus for extruding a powder material to form a pellet. The method includes the steps of: preparing a semicompacted powdered material for temporary placement in a die cavity with a constricting passage for receiving a charge of the powdered material; charging the die cavity containing the semicompacted powdered material with a predetermined amount of the powdered material; and pressing the charged powder material into the die cavity against the semicompacted material and extruding the semicompacted material from the die cavity through the constricting passage, whereby the semicompacted material is completely compressed to form a pellet, and the charged powdered material is incompletely compressed into a semicompacted form. The charging and pressing steps are repeated to successively form the powdered material into pellets via the semicompacted material.
    Type: Grant
    Filed: February 4, 1993
    Date of Patent: April 25, 1995
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventor: Yoshiki Hirai
  • Patent number: 5409661
    Abstract: An aluminum alloy consists essentially of 90 to 99.5% by weight of matrix and 0.5 to 10% by weight of a dispersant dispersed within the matrix. The matrix comprises 10 to 25% by weight of Si, 5 to 20% by weight of Ni, 1 to 5% by weight of Cu and the rest of Al and impurity elements. The dispersant is at least one selected from the group consisting of 0.5 to 10% of nitride, boride, carbide and oxide. The aluminum alloy shows excellent tensile strength and wear resistance.
    Type: Grant
    Filed: May 24, 1994
    Date of Patent: April 25, 1995
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Imahashi, Hirohisa Miura, Yasuhiro Yamada, Hirohumi Michioka, Jun Kusui, Akiei Tanaka
  • Patent number: 5407734
    Abstract: A composite is produced by depositing an organic slurry of ceramic matrix-forming material on a layer of fibrous material forming a tape therewith on drying, forming a layered structure of the tapes, laminating the structure, firing the laminated structure to burn out organic material and hot pressing the resulting porous structure to form a composite.
    Type: Grant
    Filed: October 20, 1988
    Date of Patent: April 18, 1995
    Assignee: General Electric Company
    Inventors: Raj N. Singh, Achuta R. Gaddipati
  • Patent number: 5405571
    Abstract: A fiber reinforced composite tape is made by casting a mixture comprising high temperature metal or intermetallic particles, substantially continuous ceramic fibers and a polymeric binder. The particles are preferably titanium alloy or titanium aluminide particles having a top size of greater than about 50 microns and the binder is preferably a polyisobutylene. The cast composite tape is combined with other tapes, heated in a vacuum to remove the binder and pressed at an elevated temperature and pressure to form a composite structure suitable for high temperature applications.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: April 11, 1995
    Assignee: Aluminum Company of America
    Inventors: William G. Truckner, Jon F. Edd
  • Patent number: 5405573
    Abstract: The present invention addresses problems in the diamond saw blade and segment art. One aspect of the invention comprises a method for making handleable, strong, discrete, metal-clad abrasive pellets. This method comprises the steps of:(a) spraying onto a bed of gas-fluidized abrasive particles a slurry of metallic powder, a binding agent, and a volatile solvent until substantially all the abrasive particles are coated with at least about 20 wt-% of the metallic powder;(b) recovering the metal powder coated abrasive particles; and(c) heating said recovered coated particles under conditions to form a sintered continuous metal coating enveloping said abrasive particles. The resulting sintered metal-clad pellets form another aspect of the invention.
    Type: Grant
    Filed: May 4, 1992
    Date of Patent: April 11, 1995
    Assignee: General Electric Company
    Inventors: Thomas J. Clark, Roger R. Matarrese, Roger W. McEachron, Sergio Sinigaglia
  • Patent number: 5405707
    Abstract: In order to form internal conductors of a multilayer ceramic electronic component such as a multilayer ceramic capacitor, copper paste containing copper powder having a mean particle size of 0.3 to 2 .mu.m in a particle size range of 0.1 to 4 .mu.m and ceramic powder having a main component which is common to that of a ceramic material contained in the multilayer ceramic electronic component and being in a particle size range of 0.5 to 8 .mu.m, as well as an organic vehicle and a solvent with the contents of the copper powder and the ceramic powder and the total content of the organic vehicle and the solvent in ranges of 40 to 70 percent by weight, 1 to 15 percent by weight and 25 to 60 percent by weight respectively is applied onto ceramic green sheets. The ceramic green sheets provided with such copper paste films are stacked and fired so that occurrence of voids in the laminate and deformation of the laminate are suppressed in the as-obtained multilayer ceramic electronic component.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: April 11, 1995
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroji Tani, Kazuhito Ohshita, Mitsuyoshi Nishide
  • Patent number: 5403544
    Abstract: A method for forming a wear surface on a metal substrate has a slurry which includes wear resistant particles, powdered steel, and binder system positioned on the metal substrate by retaining walls for a time sufficient for drying the slurry and forming a composite material of preselected thickness "T". The retaining walls are then removed and the substrate and the composite material are heated and passed through a rolling mill compressing the composite material.
    Type: Grant
    Filed: December 20, 1993
    Date of Patent: April 4, 1995
    Assignee: Caterpillar Inc.
    Inventors: Richard L. Adrian, James C. Henehan, Phillip J. Shankwitz
  • Patent number: 5399438
    Abstract: Disclosed is a stainless steel member with a high corrosion resistance suitable for a structural member used in highly corrosive environments, such as an edge seal plate of a molten carbonate fuel cell. This stainless steel member includes a base material consisting of stainless steel containing chromium, and a corrosion-protective layer formed on the surface of the base material. In this corrosion-protective layer, a granular heterophase containing chromium is precipitated in an ordered alloy consisting of aluminum and the constituent elements of the base material.
    Type: Grant
    Filed: September 14, 1993
    Date of Patent: March 21, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Tateishi, Kiyoshi Imai, Hideyuki Ohzu, Kazuaki Nakagawa, Yoshihiro Akasaka
  • Patent number: 5399312
    Abstract: A process for fabricating Thallium-based superconducting tapes comprising the steps of: (1) preparing a powder mixture having a nominal composition of (Tl.sub.1-x-y Bi.sub.y Pb.sub.z)(Ba.sub.2-z Sr.sub.z)Ca.sub.2 Cu.sub.3 O.sub.9 ; (2) placing the powder mixture into a silver tube and drawing and/or swaging the silver tube containing the powder mixture into a wire having a pre-determined diameter, wherein x and y are real numbers between 0.2 and 0.4, and z is a real number between 0 and 2; (3) rolling the wire into a tape having a pre-determined thickness; and (4) subjecting the tape to a two-stage single-sintering process at two respective sintering temperatures. The two-stage single-sintering process of the present invention allows Thallium-based superconducting tapes to be fabricated which exhibit substantially increased critical current density, without causing a substantially increased cost and complexity, as do other prior art processes, such as the double-sintering process.
    Type: Grant
    Filed: October 4, 1993
    Date of Patent: March 21, 1995
    Assignee: Industrial Technology Research Institute
    Inventors: Ru-Shi Liu, Sheng-Feng Wu, Chung-Ho Tai, Der-Shiuh Shy
  • Patent number: 5397650
    Abstract: A composite spray coating comprises an iron base material, a spray coating film applied thereon and a diffusion layer of aluminum or aluminum-zinc alloy, and is used for hot-dip galvanization.
    Type: Grant
    Filed: June 7, 1994
    Date of Patent: March 14, 1995
    Assignee: Tocalo Co., Ltd.
    Inventors: Yoshio Harada, Kazumi Tani, Yoshihumi Kobayashi
  • Patent number: 5397531
    Abstract: Metal injection-molded green bodies (2) are formed from a granulated feedstock comprising metal powder and a binder comprising:a) 15-25 volume % paraffin waxb) 20-30 volume % microcrystalline waxc) 45-60 volume % polyethylene.The paraffin wax has two melting regions around 45.degree. C. and 63.degree. C. and the microcrystalline wax exhibits four melting regions in the range 62.degree. C. and 144.degree. C. By raising the temperature of the oven in a controlled manner, first the paraffin wax and then the microcrystalline wax melts and is vapourised and entrained in a flow of carrier gas which flows over supporting trays (5), as indicated by the horizontal arrows (a). The requirement for wicking powder is eliminated by the staged removal of the wax and the polyethylene can subsequently be removed at a higher temperature by thermal depolymerisation in the same apparatus.
    Type: Grant
    Filed: June 2, 1993
    Date of Patent: March 14, 1995
    Assignee: Advanced Materials Technologies Pte Limited
    Inventors: D. Dunstan H. Peiris, Jian G. Zhang
  • Patent number: 5393485
    Abstract: A process for the production of foamable elements, in which a metal powder is mixed with a foaming agent powder, the powder mixture is brought to an elevated temperature in a receiver and is extruded through a die, so that the extruded part can be subsequently foamed by decomposition of the foaming agent powder by heating of the extruded part and then cooled to yield a finished foam element. The powder mixture is continuously introduced into a channel, leading to the die, which has a moving wall component by which the powder mixture is transported in the channel by friction with precompacting and is extruded through the die. The speed of the wall component is selected so that the heating necessary for the precompacting comes from heat generated in the transport operation.
    Type: Grant
    Filed: April 23, 1993
    Date of Patent: February 28, 1995
    Assignee: Mepura Metallpulvergesellschaft M.G.H.
    Inventors: Helmut Worz, Hans P. Degischer
  • Patent number: 5393613
    Abstract: Direct fabrication of three-dimensional metal parts by irradiating a thin layer of a mixture of metal powder and temperature equalization and unification vehicle to melt the metal powder and form a solid metal film. The vehicle also protects the molten metal from oxidation. The metal powder can contain an elemental metal or several metals, the vehicle can be an organic resin or an amalgam, and the irradiation can be selectively applied by a YAG laser.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: February 28, 1995
    Assignee: Microelectronics and Computer Technology Corporation
    Inventor: Colin A. MacKay
  • Patent number: 5393486
    Abstract: A method of making an orthodontic appliance such as a bracket includes the step of forming a preform of molding material while a portion of the molding material is in contact with a textured portion of a web. The web is subsequently degraded by a thermal or solvent degrading process to leave a witness impression on the underside of the preform. The web optionally serves as a conveyor to move the preform from one processing area to another, and optionally has the appearance of a woven material such that the resulting appliance resembles a mesh base appliance having undercut regions.
    Type: Grant
    Filed: December 9, 1993
    Date of Patent: February 28, 1995
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Robert P. Eckert, Evangelos G. Georgakis
  • Patent number: 5391347
    Abstract: Process for obtaining fritted oxide pellets of the MxOy type for nuclear fuels from solutions of soluble salts of the element or elements M, involving stage of precipitating the elements M by hydrogen peroxide in an acid medium. During this precipitation, there is an instantaneous dispersion of one of the reagents (solution of salts or peroxide) in the other, in order to obtain a homogenous mixture and an also instantaneous precipitation of the nuclei in a continuous liquid phase confined in an enclosure having minimum dimensions, the mother liquors being rapidly exhausted. The process makes it possible to obtain sintered pellets whose density exceeds 96% of the theoretical density.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: February 21, 1995
    Inventors: Bernard Bastide, Antoine Floreancig
  • Patent number: 5387471
    Abstract: A coating for a part made of a nickel alloy of the following type: Cr: 15% to 20%, Co: 8% to 20%, Mo: 1.5% to 4%, Ti: 3% to 5%, Al: 3% to 3.5%, W: .ltoreq.3.8%, Fe: .ltoreq.1.2%, Nb: .ltoreq.0.9%, C: .ltoreq.0.1%, B: .ltoreq.0.01%, and Ta: .ltoreq.2.8%, the remainder being Ni, the coating having hardness of about 400 HV and including a plurality of layers (5', 5") of a wear-resistant cobalt-containing material of the following type: C: <1%, Cr: 26% to 30%, W: 18% to 21%, Ni: 4% to 6%, V: 0.75% to 1.15%, Fe: .ltoreq.3%, Mn .ltoreq.1%, Si: .ltoreq.1%, and B: .ltoreq.0.05%, the remainder being Co, said coating being characterized in that a buffer layer (5) is disposed between the part and the cobalt-containing layers (5', 5"), which buffer layer is made from a pre-alloyed powder having the following composition: Si: 0.7% to 2.9%, Cr: 11% to 26%, Fe: 0.5% to 3%, C: 0.35% to 0.85%, B: 0.3% to 1.35%, Ni: 20% to 69%, W: 3.6% to 16.8%, Mn .ltoreq.0.8%, and Co: 7% to 41.5%.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: February 7, 1995
    Assignee: European Gas Turbines SA
    Inventors: Emmanuel Kerrand, Vincent Le Castrec, Didier Boucachard
  • Patent number: 5384088
    Abstract: Wire, bulk, film, etc. of a superconductive material is manufactured from a powdery precursor. The superconductive material has a superconductive crystal of 1223 phase and/or 1234 phase as a main component, and the powdery precursor comprises at least 1212 phase as a main component.
    Type: Grant
    Filed: October 23, 1992
    Date of Patent: January 24, 1995
    Assignees: Hitachi Cable, Ltd., Hitachi Ltd.
    Inventors: Junichi Sato, Masahiro Seido, Akira Nomoto, Tomoichi Kamo, Katsuzo Aihara
  • Patent number: 5384201
    Abstract: A carrier material for a tool for treating surfaces is composed of a metal alloy with a homogeneous, fine-grained structure. The carrier material is treated in a material removing manner to obtain a predetermined size and a roughness. Then an activating layer, a pure metal layer and a transition layer composed for example from nitrogen are applied, so that the outermost region of the tool contains a non-metallic hard layer. The non-metallic hard layer has a high hardness and elasticity so that the tool is suitable especially for treating surfaces of structural parts.
    Type: Grant
    Filed: March 18, 1993
    Date of Patent: January 24, 1995
    Assignee: Robert Bosch GmbH
    Inventors: Ludwig Finkbeiner, Manfred Wilhelm