Patents Examined by John Sheehan
  • Patent number: 6521054
    Abstract: Disclosed herein is a magnetic powder which can provide a magnet having excellent magnetic properties and having excellent reliability especially excellent in heat stability. The magnetic powder is composed of an alloy composition represented by Rx(Fe1−yCoy)100−x−z−w−vBzAlwVv (where R is at least one kind of rare-earth element, x is 7.1-9.9 at %, y is 0-0.30, z is 4.6-6.9 at %, w is 0.02-1.5 at % and v is 0.2-3.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: February 18, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6514456
    Abstract: The invention concerns the use of a WC—Co cutting metal alloy for a component or a tool insert, which is shaped from a corresponding cutting metal blank by means of an electrical discharge processing method. The WC fraction in the carbide phase of the cutting metal alloy is more than 90 wt %; the binder phase consists mostly of cobalt and is 8 to 15 wt % with reference to the cutting metal alloy. 0.1 to 3 wt % of one or more metals from the group Re, Ge, Ga, Ir, Os, Pd, Ag, Au, Pt, Te, Sb, Rh, and Ru, with reference to the binder phase, are dissolved in the binder phase.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: February 4, 2003
    Assignee: Plansee Tizit Aktiengesellschaft
    Inventors: Andreas Lackner, Werner Ferstl, Gerhard Kn{overscore (u)}nz, Hans-Peter Martinz, Klaus Prandini
  • Patent number: 6514357
    Abstract: A composition for metal surface treatment which comprises an aluminum ion, a magnesium ion, a manganese ion, a water-soluble organic resin, an acid and water; and a surface treated metal material which has been treated with the composition. The resultant surface treated metal material is free from the danger of water contamination owing to chromium, since the composition is free of chromium, and also is excellent in both electrical conductivity and corrosion resistance. Accordingly, the metal material can be used in a wide variety of applications in place of a conventional chromate-treated steel sheet and the like.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: February 4, 2003
    Assignees: Kawasaki Steel Corporation, Dai Nippon Toryo Co., Ltd.
    Inventors: Chiyoko Tada, Hiroyuki Ogata, Shigeru Umino
  • Patent number: 6514360
    Abstract: Disclosed is a method for manufacturing a tube and a sheet of niobium-containing zirconium alloys for the high burn-up nuclear fuel. The method comprises melting Nb-added zirconium alloy to ingot; forging the ingot at &bgr; phase range; &bgr;-quenching the forged ingot after solution heat-treatment at 1015-1075° C.; hot-working the quenched ingot at 600-650° C.; cold-working the hot-worked ingot in three to five passes, with intermediate vacuum annealing; and final vacuum annealing the cold-worked ingot at 440-600° C., wherein temperatures of intermediate vacuum annealing and final vacuum annealing after &bgr;-quenching are changed so as to attain the condition under which precipitates in the alloy matrix are limited to an average diameter of 80 nm or smaller and the accumulated annealing parameter (&Sgr; A) is limited to 1.0×10−18 hr or lower.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: February 4, 2003
    Assignees: Korea Atomic Energy Reserach Institute, Korea Electric Power Corporation
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Kyeong Ho Kim, Myung Ho Lee, Sang Yoon Park, Cheol Nam, Younho Jung
  • Patent number: 6514358
    Abstract: Magnetic materials for use in sputtering targets are hot rolled and stretched at ambient temperature or at a temperature not exceeding 1400° F. The magnetic material can be pure Co, pure Ni, or Co based alloys.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: February 4, 2003
    Assignee: Heraeus, Inc.
    Inventors: Michael Bartholomeusz, Michael Tsai
  • Patent number: 6511556
    Abstract: High strength zirconium alloys with improved strength and creep resistance having 1.5 to 6 weight percent bismuth, and niobium.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: January 28, 2003
    Assignee: Siemens Power Corporation
    Inventor: Leonard F. P. Van Swam
  • Patent number: 6511552
    Abstract: Permanent magnets in which the ferromagnetic phase is matched with the grain boundary phase, and permanent magnets in which magnetocrystalline anisotropy in the vicinity of the outermost shell of the major phase is equivalent in intensity to that in the inside to suppress nucleation of the inverse magnetic domain. Guideline for designing permanent magnets having high magnetic performance is provided.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: January 28, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Ken Makita, Osamu Yamashita
  • Patent number: 6508888
    Abstract: A superconducting conductor and method for its production. The conductor is formed of least one superconducting core and an aluminum based cryogenic stabilizer which is a high purity Al—Fe—Ni aluminum alloy having a composition, in % by weight: 200 ppm≦Fe+Ni≦1500 ppm; 0.20≦Fe/(Fe+Ni)≦0.65; optionally, B<100 ppm; impurities other than Fe, Ni and B<0.01% total; and remainder aluminum.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: January 21, 2003
    Assignee: Aluminium Pechiney
    Inventor: Michel Leroy
  • Patent number: 6508891
    Abstract: The method of manufacturing a hydrogen-absorbing alloy electrode according to this invention comprises the steps of: dissolving a particle surface of said hydrogen-absorbing alloy by a surface-treatment solution; and washing the hydrogen-absorbing alloy with the particle surface dissolved using an alkaline solution at a temperature of 30° C.˜40° C. The metal ions dissolved by the surface-treatment solution can be completely washed away by the alkaline solution so that they will not be precipitated onto the surface of the hydrogen-absorbing alloy again as the hydroxide.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: January 21, 2003
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Tadashi Ise, Tetsuyuki Murata, Yohei Hirota, Teruhiko Imoto, Koji Miki
  • Patent number: 6508890
    Abstract: The present invention is drawn to a method of lowering the net resistivity of an interconnect by depositing a monomer layer upon an aluminum bonding pad, the treatment thereof to cross link the monomer to form an electrically conductive polymer, and simultaneously, the substantial reduction of alumina, Al2O3, to metallic aluminum. In the method of the present invention, deposition of a monomer layer in a solvent, volatilization of the solvent, and contact with a strong oxidizer such as a potassium permanganate allows for the use of the strong oxidizer without the hindrance of having to deal with a manganese oxide husk on the surface of the aluminum bonding pad. Preferably, the chemical qualities of the monomer will include the tendency to be a reducing agent to the native oxide film of the bonding pad. By selecting a monomer that tends to reduce rather than to oxidize, the problem of thickening the native oxide film is avoided.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: January 21, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Li Li
  • Patent number: 6506264
    Abstract: A ferromagnetic powder containing iron as the principal component and containing more than 5 to 50 at. % Co, 0.1 to 30 at. % Al, 0.1 to 10 at. % of a rare earth element inclusive of Y, 0.05% by weight or less of an element belonging to Group 1a of the Periodic Table, and 0.1% by weight or less (inclusive of 0% by weight) of an element belonging to Group 2a of the Periodic Table, the powder comprising flat acicular particles having a mean major axis length of 0.01 to 0.40 &mgr;m and a crystallite diameter as determined by X-ray diffraction (Dx) of 50 to 250 angstrom, provided that the cross section diameter in the minor axis direction cut perpendicular to the major axis has a larger width and a smaller width, and that this cross section ratio in the minor axis direction, which is a larger width to smaller width ratio, uniformly yields a value of greater than 1, preferably 1.5 or higher, and the powder yielding a &sgr;s/Dx ratio of 0.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: January 14, 2003
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Seiichi Hisano, Kazuhisa Saito, Kazushi Sano, Akio Sawabe, Akito Inoue, Kenichi Inoue
  • Patent number: 6506265
    Abstract: A R—Fe—B base permanent magnet material is composed of a R—Fe—B magnet alloy which contains 87.5-97.5 vol % of a Fe14R2B1 primary phase and 0.1-3 vol % of a rare earth oxide or a rare earth and transition metal oxide. The alloy contains as a major component in its metal structure a compound selected from among zirconium-boron compounds, niobium-boron compounds and hafnium-boron compounds. The compound has an average grain size of at most 5 &mgr;m and is uniformly distributed within the alloy such that the maximum interval between neighboring grains of the compound is at most 50 &mgr;m. Rare-earth permanent magnet materials of this composition and structure have excellent magnetic properties.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: January 14, 2003
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kenji Yamamoto, Koro Tatami, Takehisa Minowa
  • Patent number: 6503415
    Abstract: Disclosed herein is a magnet powder which can provide a magnet having a high magnetic flux density and excellent magnetizability and reliability. The magnet powder is composed of an alloy composition represented by Rx(Fe1−yCOy)100−x−z−wBzAlw (where R is at least one kind of rare-earth element, x is 8.1-9.4 at %, y is 0-0.30, z is 4.6-6.8 at %, and w is 0.02-0.8 at %), and it has a structure in which a soft magnetic phase and a hard magnetic phase exist adjacent with each other. The magnet powder has characteristics in which, when an isotropic bonded magnet is molded by mixing the magnet powder with a binding resin, the magnetic flux density (B) of the bonded magnet, in the region of B higher than the straight line for Pc (permeance coefficient)=2.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: January 7, 2003
    Assignee: Seiko Epson Corporation
    Inventor: Akira Arai
  • Patent number: 6503346
    Abstract: Cladding tube for a fuel rod for a boiling water reactor fuel element, and its production. The cladding tube is composed practically homogeneously of the constituents of zircaloy and, with the ductility parameter &ggr;=3{square root over ((kd))}/(fr)2≦3.5 (&ggr;=ductility parameter, KD=mean grain diameter; fr=Kearns factor), has an elongation at break of at least 20%, set by low-temperature treatment of an extruded tube blank. The starting body used for the extrusion has a defined distribution of precipitated secondary particles which is produced by &bgr;-quenching and differs in the areas which form the inner surface and outer surface of the extruded tube. At the inner surface, the particles have a greater diameter and are at a greater average distance apart, this distribution being described by the “spacing”.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: January 7, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventor: Eckard Steinberg
  • Patent number: 6503344
    Abstract: A boronizing agent in the form of a paste for the production of boride layers on metallic workpieces. The boronizing agent contains boron-releasing substances, activating substances and the remainder of inert, refractory extenders together with water and optionally auxiliaries required for paste formulation. It contains as additives: (a) calcium carbonate and/or lithium carbonate; (b) at least one compound from the group of alkali metal and alkaline earth metal nitrites; (c) at least one compound from the group of water soluble alkali metal and alkaline earth metal borates.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: January 7, 2003
    Assignee: Houghton Durferrit GmbH
    Inventors: Ulrich Baudis, Stefan Wigger
  • Patent number: 6503341
    Abstract: This self-compensating spiral for a mechanical spiral balance-wheel oscillator in watchwork or other precision instrument, made of a paramagnetic alloy, contains at least one of the elements Nb, V, Ta, Ti, Zr, Hf and is covered with a substantially uniform oxide layer having a thickness greater than or equal to 20 nm, formed by subjecting the said spiral to an anodizing treatment.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: January 7, 2003
    Assignees: Montres Rolex S.A., Manufacture des Montres Rolex S.A.
    Inventors: Jacques Baur, Patrick Sol
  • Patent number: 6503343
    Abstract: A direct displacement plating process provides a uniform, adherent coating of a relatively stable metal (e.g., nickel) on a highly reactive metal (e.g., aluminum) that is normally covered with a recalcitrant oxide layer. The displacement reaction proceeds, preferably in a nonaqueous solvent, as the oxide layer is dissolved by a fluoride activator. Halide anions are used to provide high solubility, to serve as an anhydrous source of stable metal ions, and to control the rate of the displacement reaction. A low concentration of activator species and little or no solution agitation are used to cause depletion of the activator species within pores in the surface oxide so that attack of the reactive metal substrate is minimized. Used in conjunction with electroless nickel deposition to thicken the displacement coating, this process can be used to render aluminum pads on IC chips solderable without the need for expensive masks and vacuum deposition operations.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: January 7, 2003
    Assignee: Innovative Technology Licensing, LLC
    Inventors: D. Morgan Tench, Leslie F. Warren, Jr., John T. White
  • Patent number: 6503342
    Abstract: Disclosed is a process for the production of Zintl compounds by thermal decomposition of heterometallic phosphinidene complexes. The heterometallic phosphinidene complex typically comprises at least two metals, at least one of which is selected from a Group I metal, M1, and another being a metal M2, selected from Group 13, 14 or 15 of the Periodic Table. The heterometallic phosphinidene complex further comprises one or more phosphinidene ligands, [PR], wherein R is typically a substituted or unsubstituted hydrocarbyl group, and a Lewis base stabilizing ligand. Thermal decomposition of the heterometallic phosphinidene complexes in accordance with the invention forms a Zintl compound comprising metals M1 and M2 coordinated to Lewis base stabilizing ligands, Lg. The invention further provides a process for removal of the stabilizing ligand from the Zintl compounds to form an intermetallic compound.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: January 7, 2003
    Inventors: Dominic Wright, Alex Hopkins, Neil Stoodley
  • Patent number: 6503339
    Abstract: The invention relates to a method to produce non-grain-oriented magnetic steel sheet made of thin-slab or slab casting with low specific total loss and high polarisation and favourable mechanical properties. It is a characteristic of the invention that the steel slabs are hot rolled either directly from the casting heat or after a reheating to T≧900 ° C. and two or more metal forming passes are performed in the two-phase region austenite/ferrite in the course of finishing rolling.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: January 7, 2003
    Assignee: Thyssen Krupp Stahl AG
    Inventors: Hans Pircher, Rudolf Kawalla, Manfred Espenhahn, Brigitte Hammer, Klaus Peters, Jürgen Schneider, Carl-Dieter Wuppermann
  • Patent number: 6500276
    Abstract: The present invention provides a conversion coating solution containing polymetalates and/or heteropolymetalates to oxidize the surface of various metal substrates. The polymetalates have the general formula MxOyn−, where M is selected from the group comprising Mo, V and W. The heteropolymetalates have the general formula BMxOyn−, where B is a heteroatom selected from P, Si, Ce, Mn or Co, and M is again selected from Mo, V, W or combinations thereof. The concentration of polymetalates and/or heteropolymetalates anions is preferably between about 1% and about 5% by weight. Examples of typical anions used include, but are not limited to, (PMo12O40)3−, (PMo10V2O40)5−, (MnPW11O39)5−, (PW12O40)3−, (SiMo12O40)4−, (SiW12O40)4−, (Mo7O24)6−, (CeMo7O24)8−and mixtures thereof.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: December 31, 2002
    Assignee: Lynntech Coatings, Ltd.
    Inventors: Zoran Minevski, Cahit Eylem, Jason Maxey, Carl Nelson