Patents Examined by John Sheehan
  • Patent number: 6620263
    Abstract: The phosphate concentration, and therefore the pollution potential, of conventional high quality phosphating compositions containing zinc, manganese, and, optionally, nickel or copper cations, can be reduced without loss of corrosion protective value of the phosphate coatings formed by maintaining concentrations of active ingredients within prescribed ranges. Under the most preferred conditions, the corrosion resistance of phosphated and then painted cold rolled steel and the paint adhesion to phosphated and then painted electrogalvanized steel are improved over values obtained with the now most commonly used commercial high quality low zinc phosphating processes.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: September 16, 2003
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventor: Michael L. Sienkowski
  • Patent number: 6620519
    Abstract: A method and system for inhibiting corrosion of aluminum and other metal-containing components and structures exposed to water is disclosed. In one embodiment, the silicate solution is used as a test fluid medium for structural testing of aluminum-alloy or other metal container structures including propellant tanks, in which a structure filled with the medium is then subjected to various structural load testing. In another embodiment, the silicate solution is used as a test medium for proof pressure hydrostatic or load testing of launch vehicle booster tanks. The silicate film protects the underlying base metal surface against corrosion during these tests. The film also protects the base metal surface in normal atmospheric conditions from exposure to humidity and other atmospheric moisture after removal of the test medium from the propellant tank following completion of testing.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: September 16, 2003
    Assignee: Lockheed Martin Corporation
    Inventor: Paresh R. Modi
  • Patent number: 6616891
    Abstract: A reversible hydrogen storage alloy capable of absorbing approximately 4 weight percent hydrogen and desorbing up to 2.8 weight percent hydrogen at temperatures up to 100° C. The hydrogen storage alloy is generally composed of titanium, vanadium, chromium, and manganese. Additional elements such as zirconium, yttrium, iron, nickel, zinc, molybdenum, and tantalum may also be included in the alloy.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: September 9, 2003
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Krishna Sapru, Zhaosheng Tan, Mohamed Bazzi, Subramanian Ramachandran, Stanford R. Ovshinsky
  • Patent number: 6616779
    Abstract: In a process for producing a workpiece from a chromium alloy, consisting of: 32-37 % by weight chromium, 28-36 % by weight nickel, max. 2 % by weight manganese, max. 0.5 % by weight silicon, max. 0.1 % by weight aluminum, max. 0.03 % by weight carbon, max. 0.025 % by weight phosphorus, max. 0.01 % by weight sulfur, max. 2 % by weight molybdenum, max. 1 % by weight copper, 0.3-0.7 % by weight nitrogen, remainder iron and production-related admixtures and impurities, the workpiece is cold worked and, by means of the cold working, is brought to a yield strength of at least 1000 MPa (Rp0.2≧1000 MPa).
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: September 9, 2003
    Assignee: Alstom
    Inventors: Peter Ernst, Peter Uggowitzer, Hannes Speidel, Markus Speidel
  • Patent number: 6613161
    Abstract: A method of laser marking which comprises applying a laser beam to a metal surface under the influence of an assist gas to produce durable, repeatable and striking colors on the metal surface. The method provides an easy and flexible alternative to conventional metal decorating techniques.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: September 2, 2003
    Assignee: Singapore Institute of Manufacturing Technology
    Inventors: Hong Yu Zheng, Gnian Cher Lim
  • Patent number: 6613160
    Abstract: The present invention, in a method to produce a grain-oriented electrical steel sheet, proposes conditions for stable production by clarifying the causes by which secondary recrystallization is rendered unstable when primary recrystallization is controlled by raising the heating rate of decarburization annealing. The primary recrystallization structure is controlled by changing the heating rate and the oxide layer of a steel sheet is controlled by changing the conditions of soaking annealing in the decarburization annealing. The composition of the (Al, Si)N inhibitor is also controlled in the nitriding treatment thereafter.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: September 2, 2003
    Assignee: Nippon Steel Corporation
    Inventors: Yoshiyuki Ushigami, Shuichi Nakamura, Kenichi Murakami, Hiroyasu Fujii, Norihiro Yamamoto
  • Patent number: 6613275
    Abstract: The present invention concerns a non-precious dental alloy, including the following components, with the approximate proportions, in weight, given in %: gold, between 0.5 and 4, molybdenum, between 4 and 6, tungsten, between 2 and 7, indium, between 0.5 and 4, gallium, between 0.5 and 4, tin, between 0 and 4, titanium, between 0 and 2, copper, between 0 and 2, the remainder being obtained with a mixture containing approximately 70% cobalt and 30% chromium.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: September 2, 2003
    Assignee: Metalor Technologies SA
    Inventor: Nicolas Vuilleme
  • Patent number: 6605365
    Abstract: A surface treatment, especially for titanium and aluminum alloys, forms a pigmented sol-gel film covalently bonded on the metal surface to produce desired color, gloss, reflectivity, electrical conductivity, emissivity, or a combination thereof usable over a wide temperature range. The coating retains its characteristics and impact resistance following exposures to temperatures at least in the range from −321° F. to 750° F. An aqueous sol containing an alkoxyzirconium and an organosilane with an organic acid catalyst and zirconium stabilizer is applied to etched or grit blasted substrates by dipping, spraying, or drenching, to produce bonds in a single application comparable in strength and performance to standard anodize controls. Parameters affecting performance include the sol composition, the Si/Zr ratio, the ratio of sol ingredients, the concentration of the sol, the carrier solvent, solution age, catalysts, surface pretreatment, application method, curing process, and primer used.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: August 12, 2003
    Assignee: The Boeing Company
    Inventors: Kenneth A. Krienke, Kay Y. Blohowiak, Larry K. Olli, Joseph H. Osborne
  • Patent number: 6605162
    Abstract: This invention relates to an anisotropic magnet having excellent magnetic characteristics such as a high magnetic flux density, a process for producing the same, and a motor having the same.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: August 12, 2003
    Assignees: Nissan Motor Co., Ltd., Daido Tokushuko Kabushiki Kaisha
    Inventors: Hideaki Ono, Munekatsu Shimada, Norihisa Waki, Akira Fujiki, Takahiko Iriyama
  • Patent number: 6605161
    Abstract: A deposition process including applying an inoculant to at least a portion of the surface of a metal component, and then forming an intermetallic layer at the inoculant surface, such as by exposing at least the coated surface portion to a deposition environment.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: August 12, 2003
    Assignee: Aeromet Technologies, Inc.
    Inventor: David C. Fairbourn
  • Patent number: 6602352
    Abstract: A method and apparatus for manufacturing a rare earth magnet is disclosed. In a first step, a compact is produced by compacting rare earth alloy powder in a predetermined space in an orienting magnetic field. Next, a demagnetizing process is performed for the compact, and the compact is ejected from the predetermined space. Then, a additional demagnetizing process is performed for magnetic powder adhering to a surface of the compact by applying an magnetic field to the compact after the compact is ejected.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: August 5, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Shuhei Okumura, Akira Nakamura
  • Patent number: 6602354
    Abstract: A tin layer and a nickel layer are stacked sequentially on a given substrate to form a multilayered film composed of the tin layer and the nickel layer. Then, the multilayered film is heated to a given temperature to form a tin-nickel alloy film through the diffusion of the tin elements of the tin layer into the nickel layer.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: August 5, 2003
    Assignee: Suzuka National College of Technology
    Inventors: Hideyuki Kanematsu, Tatsumasa Kobayashi, Takeo Oki
  • Patent number: 6602356
    Abstract: A method of depositing by chemical vapor deposition a modified platinum aluminide diffusion coating onto a superalloy substrate comprising the steps of applying a layer of a platinum group metal to the superalloy substrate; passing an externally generated aluminum halide gas through an internal gas generator which is integral with a retort, the internal gas generator generating a modified halide gas; and co-depositing aluminum and modifier onto the superalloy substrate. In one form, the modified halide gas is hafnium chloride and the modifier is hafnium with the modified platinum aluminum bond coat comprising a single phase additive layer of platinum aluminide with at least about 0.5 percent hafnium by weight percent and about 1 to about 15 weight percent of hafnium in the boundary between a diffusion layer and the additive layer. The bond coat produced by this method is also claimed.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: August 5, 2003
    Assignee: General Electric Company
    Inventors: Bangalore A. Nagaraj, Jeffrey L. Williams
  • Patent number: 6599375
    Abstract: A composite magnetic body 1, comprising a soft magnetic powder (2) and a binding agent (3), in which the specific surface area of the soft magnetic powder (2) is 0.1-3 m2/g. The surface state of the soft magnetic powder contained in the composite magnetic body is defined in terms of specific surface area, and self-extinguishing properties, i.e. fire resistance properties, are obtained. An electromagnetic interference suppressing body is obtained using this composite magnetic body.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: July 29, 2003
    Assignee: NEC Tokin Corporation
    Inventor: Yoshio Awakura
  • Patent number: 6599376
    Abstract: A Fe-Cr soft magnetic material has electric resistivity not less than 50 &mgr;&OHgr;·cm and a metallurgical structure occupied by a ferrite phase at a surface ratio of 95% or more. A number of fine precipitates of 1 &mgr;m or less in particle size is controlled at a ratio not more than 6×105/mm2. The Fe-Cr alloy has the composition (expressed in mass or weight %) of C up to 0.05%, N up to 0.05%, Si up to 3.0%, Mn up to 1.0%, P up to 0.04%, S up to 1.0%, 5.0-20.0% Cr, Al up to 4.0%, 0-3% Mo, 0-0.5% Ti and the balance being essentially Fe under the conditions of (1) and (2). The Fe-Cr soft magnetic material is useful as a core, a yoke or the like installed in various types of magnetic sensors such as electric power steering, fuel injection systems for vehicles and A.C. magnetic circuits of solenoid valves, due to production of high magnetic induction in a high-frequency low-magnetic field: 4.3×%Cr+19.1×%Si+15.1×%Al+2.5×%Mo≧40.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: July 29, 2003
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Hiroshi Morikawa, Tomoharu Shigetomi, Ryoji Hirota, Takashi Yamauchi
  • Patent number: 6596228
    Abstract: Described is a method and apparatus for producing high purity titanium and high purity titanium so produced. The process contemplates producing titanium sponge in a container and performing titanium fused salt electrolysis in situ in the same container to produce high purity titanium crystal, and where especially low oxygen content is desired, to treat the high purity titanium crystal as produced with iodine.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: July 22, 2003
    Assignee: Honeywell International Inc.
    Inventors: Harry Rosenberg, Nigel Winters, Yun Xu
  • Patent number: 6596096
    Abstract: Permanent magnets, devices including permanent magnets and methods for manufacture are described with the permanent magnet comprising, for example: iron-boron-rare earth alloy particulate having an intrinsic coercive force of at least about 1591 kiloamperes/meter (about 20 kiloOersteds) and a residual magnetization of at least about 0.8 tesla (about 8 kiloGauss), wherein the rare earth content comprises praseodymium, a light rare earth element selected from the group consisting of cerium, lanthanum, yttrium and mixtures thereof, and balance neodymium; and a binder bonding the particulate.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: July 22, 2003
    Assignee: General Electric Company
    Inventors: Ralph James Carl, Gerald Burt Kliman, Juliana Chiang Shei, Mark Gilbert Benz, Judson Sloan Marte
  • Patent number: 6592683
    Abstract: Ti alloy is embedded in a powder such as graphite and heated with the powder in an oxygen atmosphere. Oxygen atoms are diffused into the Ti alloy to form an oxygen diffusion layer of Ti—O solid solution, thereby increasing wear resistance of the valve. A poppet valve in an internal combustion engine may be made of such Ti alloy.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: July 15, 2003
    Assignee: Fuji Oozx Inc.
    Inventors: Masahito Hirose, Hiroaki Asanuma
  • Patent number: 6592682
    Abstract: The invention concerns a method for preparing a magnetic material by forging, characterised in that, in a first embodiment, it comprises the following steps; placing in a sheath an alloy based on at least one rare earth, at least one transition metal and at least one other element selected among boron and carbon; bringing the whole alloy to a temperature not less than 500° C.; forging the whole at a deformation speed of the material not less than 8 s−1. After forging, it is possible to subject the resulting product to at least one annealing and hydridation then dehydridation, in another embodiment, it consists in starting with an alloy based on at least one rare earth and one transition metal and proceeding as in the first embodiment. After forging and, optionally, annealing, hydridation and dehydridation treatments, the resulting material is subjected to nitriding.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: July 15, 2003
    Assignee: Santoku Corporation
    Inventors: Daniel Fruchart, Rene Perrier De La Bâthie, Sophie Rivoirard, Patricia Rango
  • Patent number: 6594157
    Abstract: A magnetic powder core comprises a molded article of a mixture of a glassy alloy powder and an insulating material. The glassy alloy comprises Fe and at least one element selected from Al, P, C, Si, and B, and has a texture primarily composed of an amorphous phase. The glassy alloy exhibits a temperature difference &Dgr;Tx, which is represented by the equation &Dgr;Tx=Tx−Tg, of at least 20 K in a supercooled liquid, wherein Tx indicates the crystallization temperature and Tg indicates the glass transition temperature. The magnetic core precursor is produced mixing the glassy alloy powder with the insulating material, compacting the mixture to form a magnetic core precursor, and annealing the magnetic core precursor at a temperature in the range between (Tg−170) K and Tg K to relieve the internal stress of the magnetic core precursor. The glassy alloy exhibits low coercive force and low core loss.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: July 15, 2003
    Assignee: Alps Electric Co., Ltd.
    Inventors: Shoji Yoshida, Hidetaka Kenmotsu, Takao Mizushima, Kazuaki Ikarashi, Yutaka Naito