Patents Examined by Jonathan Johnson
  • Patent number: 8748736
    Abstract: A multilayer anti-reflection structure for a backside contact solar cell. The anti-reflection structure may be formed on a front side of the backside contact solar cell. The anti-reflection structure may include a passivation level, a high optical absorption layer over the passivation level, and a low optical absorption layer over the high optical absorption layer. The passivation level may include silicon dioxide thermally grown on a textured surface of the solar cell substrate, which may be an N-type silicon substrate. The high optical absorption layer may be configured to block at least 10% of UV radiation coming into the substrate. The high optical absorption layer may comprise high-k silicon nitride and the low optical absorption layer may comprise low-k silicon nitride.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: June 10, 2014
    Assignee: SunPower Corporation
    Inventors: Hsin-Chiao Luan, Denis De Ceuster
  • Patent number: 8742251
    Abstract: The invention provides a photovoltaic power converter that includes a plurality of spatially separated device segments supported by a substrate, wherein the device segments are arranged in a circular pattern wherein a first group of the device segments consisting of one or more of the device segments is centrally positioned and is surrounded by a second group of the device segments comprising at least two device segments and wherein two or more of the plurality of the device segments are connected in series for developing a voltage when radiation of selected wavelengths is incident on the device.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: June 3, 2014
    Assignee: JDS Uniphase Corporation
    Inventors: Jan-Gustav Werthen, Qiang Liu, Seniwati Widjaja, Ta-Chung Wu
  • Patent number: 8742249
    Abstract: Solar module structures 210 and 270 and methods for assembling solar module structures. The solar module structures 210 and 270 comprise three-dimensional thin-film solar cells 110 arranged in solar module structures 210 and 270. The three-dimensional thin-film solar cell comprises a three-dimensional thin-film solar cell substrate (124 and 122, respectively) with emitter junction regions 1352 and doped base regions 1360. The three-dimensional thin-film solar cell further includes emitter metallization regions and base metallization regions. The 3-D TFSC substrate comprises a plurality of single-aperture or dual-aperture unit cells. The solar module structures 270 using three-dimensional thin-film solar cells comprising three-dimensional thin-film solar cell substrates with a plurality of dual-aperture unit cells may be used in solar glass applications.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: June 3, 2014
    Assignee: Solexel, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 8742248
    Abstract: A photoelectric conversion module and a method of manufacturing the same are disclosed. The photoelectric conversion module may include a light-receiving substrate in which a first functional layer having a photoelectrode is formed, a counter substrate that faces the light-receiving substrate and is electrically coupled to the light-receiving substrate and in which a second functional layer having a counter electrode is formed. The photoelectric conversion module may include a sealant formed between the light-receiving substrate and the counter substrate and positioned so as to divide a plurality of unit photoelectric cells formed between the light-receiving substrate and the counter substrate. The photoelectric conversion module may include a plurality of interconnection units electrically connecting adjacent unit photoelectric cells.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: June 3, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyun-Chul Kim, Jung-Suk Song
  • Patent number: 8735717
    Abstract: A highly reliable thin film solar cell and a method of manufacturing the same are provided to improve bonding strength between a back-surface electrode layer and a bus bar without limiting the kind of metal film of the back-surface electrode layer. The thin film solar cell at least includes a light-transmitting insulating substrate, a transparent conductive film, a photoelectric conversion layer, and a back-surface electrode layer provided on the light-transmitting insulating substrate, and a bus bar provided on the back-surface electrode layer. The bus bar is electrically connected with the back-surface electrode layer with a conductive tape interposed whereby the back-surface electrode layer is used as a take-out electrode. The conductive tape preferably includes a thermosetting resin and a conductive particle. Furthermore, the conductive tape is preferably an anisotropic conductive tape.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: May 27, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Shinsuke Tachibana
  • Patent number: 8729385
    Abstract: A interconnected arrangement of photovoltaic cells is readily and efficiently achieved by using a unique interconnecting strap. The strap comprises electrically conductive fingers which contact the top light incident surface of a first cell and extend to an interconnect region of the strap. The interconnect region may include through holes which allow electrical communication between top and bottom surfaces of the interconnect region. In one embodiment, the electrically conductive surface of the fingers is in electrical communication with an electrically conductive surface formed on the opposite side of the strap through the through holes of the interconnect region. The interconnection strap may comprise a laminating film to facilitate manufacture and assembly of the interconnected arrangement.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: May 20, 2014
    Inventor: Daniel Luch
  • Patent number: 8729382
    Abstract: A photovoltaic-charged secondary battery system is provided, in which an electrode for optical power generation and an electrode for charging and discharging generated electrical energy are integrated into a single cell structure, and the potential difference between the electrodes is systematically controlled, thus maximizing the conversion efficiency of optical energy, maximizing the utilization rate of cell energy, and extending the life span of the battery. Thus, the photovoltaic-charged secondary battery system may include a transparent electrode capable of transmitting light; a PN semiconductor layer formed on the transparent electrode and generating a current by incident light; and a secondary battery layer, formed on the PN semiconductor layer, in which the current generated by the PN semiconductor layer is charged.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 20, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Joong Kee Lee, Byung Won Cho, Kyung Yoon Chung, Hyung Sun Kim, Il Doo Kim, Chan Wook Jeon, Yong Sang Kim
  • Patent number: 8729387
    Abstract: Disclosed is an organic photoelectric conversion element having high photoelectric conversion efficiency and high durability. Also disclosed are a solar cell and an optical sensor array, each using the organic photoelectric conversion element. The organic photoelectric conversion element comprises a bulk heterojunction layer wherein an n-type semiconductor material and a p-type semiconductor material are mixed. The organic photoelectric conversion element is characterized in that the n-type semiconductor material is a polymer compound and the p-type semiconductor material is a low-molecular-weight compound.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: May 20, 2014
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Yasushi Okubo, Takahiko Nojima, Hiroaki Itoh, Ayako Wachi
  • Patent number: 8723022
    Abstract: Electrochemical methods for manufacturing a zinc ferrite (ZnFe2O4) thin film include preparing an electrodeposition solution and forming the zinc ferrite thin film on a conductive substrate under suitable conditions. The electrodeposition solution includes about 10?2 M to about 10?1 M zinc nitrate aqueous solution and about 10?3 M to about 10?2 M ferric nitrate aqueous solution.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: May 13, 2014
    Assignee: Taiwan Textile Research Institute
    Inventor: Wen-Hsien Ho
  • Patent number: 8723019
    Abstract: A solar cell including: a silicon (Si) substrate; a buffer layer disposed on a side of the silicon substrate; a germanium (Ge) junction disposed on a side of the buffer layer opposite the silicon substrate; a first electrode electrically connected to the germanium junction; and a second electrode electrically connected to the germanium junction, wherein the buffer layer has a lattice constant that increases in a direction from the silicon substrate to the germanium junction.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: May 13, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Ho Kim
  • Patent number: 8723024
    Abstract: Provided is a transparent electrode including a graphene sheet. A transparent electrode having high conductivity, low sheet resistance, and low surface roughness can be prepared by employing the graphene sheet.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: May 13, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Young Choi, Hyeon-Jin Shin, Seon-mi Yoon, Young-hee Lee
  • Patent number: 8710361
    Abstract: Volume compensation in photovoltaic device is provided. The photovoltaic device has an outer transparent casing and a substrate that, together, define an inner volume. At least one solar cell is on the substrate. A filler layer seals the at least one solar cell within the inner volume. A container within the inner volume has an opening in fluid communication with the filler layer. A diaphragm is affixed to the opening thereby sealing the interior of the container from the filler layer. The diaphragm is configured to decrease the volume within the container when the filler layer thermally expands and to increase the volume within the container when the filler layer thermally contracts. In some instances, the substrate is hollowed and the container is formed within this hollow. The container can have multiple openings, each sealed with a diaphragm. There can be multiple containers within the photovoltaic device.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: April 29, 2014
    Assignee: Solyndra, LLC
    Inventors: Brian Cumpston, Tim Leong
  • Patent number: 8710359
    Abstract: A display module is provided, which includes a first and a second substrates, a transparent type solar cell, a display device, an electric power storage device, a driving circuit and a power supply transfer switch. In the display module, the first substrate, the transparent type solar cell, the display device and the second substrate are successively arranged according to an incident direction of a light source. The transparent type solar cell has a visible light transmittance of 10%-40% and a color temperature (Tc) larger than 2400K. The electric power storage device is connected to the transparent type solar cell for storing electric power there from, and the driving circuit is connected to the display device for driving the same. The power supply transfer switch is used for transferring the electric power into the electric power storage device or the driving circuit.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: April 29, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Hsing-Hua Wu, Chian-Fu Huang, Wei-Yuan Cheng, Jyh-Wen Shiu
  • Patent number: 8710352
    Abstract: An arrangement for use in a concentrating photovoltaic system including a module having plurality of solar cells are mounted on a first side, and a plurality of lenses are mounted on a second side. Drive motors are coupled to the module to enable it to track the sun during the course of the day. A sun sensor is attached to the housing to detect a predetermined timed pattern of light blocking to the sensor and for generating a control signal to the drive motors in response to such detection for moving the module to a predetermined fixed position.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 29, 2014
    Assignee: Suncore Photovoltaics, Inc.
    Inventors: Dan McDermott, Richard L. Johnson, Jr.
  • Patent number: 8701360
    Abstract: A method of assembling a solar array includes forming at least one substrate member that includes an upper surface and a lower surface. The lower surface is contoured with a shape that at least partially conforms to at least a portion of a contoured roof. The upper surface includes at least one elevated portion and a plurality of substantially planar regions. The at least one elevated portion is offset a predetermined height above at least one other portion of the substrate member. Each of the plurality of substantially planar regions is a distance above the at least one elevated portion and is oriented to receive at least one photovoltaic laminate. The method also includes coupling the at least one substrate member to at least a portion of the contoured roof.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: April 22, 2014
    Assignee: General Electric Company
    Inventor: Stephen Daniel Ressler
  • Patent number: 8692108
    Abstract: A solar power collecting device including a parabolic concentrating unit, a light-guide pillar positioned on the parabolic concentrating unit, a solar cell positioned on the light-guide pillar and a transmissive protection cap for covering the light-guide pillar and the solar cell is disclosed.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: April 8, 2014
    Assignee: EPISTAR Corporation
    Inventor: Tsung-Xian Lee
  • Patent number: 8692104
    Abstract: A thermoelectric element has a first substrate at a high temperature side, a second substrate at a low temperature side facing the first substrate, a thermoelectric material placed on the second substrate via a silicon layer, a first electrode formed on the first substrate, and a second electrode formed on the silicon layer. The thermoelectric element has a stress releasing section which is formed between the first electrode and the thermoelectric material, and which includes a plurality of columnar portions. The stress releasing section suppresses defects such as cracks that might be produced in the thermoelectric element due to a stress generated in the thermoelectric element.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: April 8, 2014
    Assignee: TDK Corporation
    Inventors: Takashi Asatani, Fujimi Kimura
  • Patent number: 8692173
    Abstract: The present invention provides an apparatus and method for solar tracking. The solar tracking sensor array and method so disclosed can be used with any device that requires a specific orientation to the sun for optimal operation. The system relies upon a sun tracking mechanism which includes a plurality of phototransistors configured in a particular manner. The apparatus can further be used with an analog sensor circuit which is also disclosed herein. Although the device and method are disclosed in conjunction with a solar tracking device, which includes the analog sensor circuit, a drive assembly, and a power source, these components may be used independently of one another.
    Type: Grant
    Filed: August 22, 2009
    Date of Patent: April 8, 2014
    Inventors: Karim Altaii, Benjamin Thomas
  • Patent number: 8686282
    Abstract: A system for generating electrical power from solar radiation utilizing a thin film III-V compound multijunction semiconductor solar cell mounted on a support in a non-planar configuration is disclosed herein.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: April 1, 2014
    Assignee: Emcore Solar Power, Inc.
    Inventors: Daniel McGlynn, Paul R. Sharps, Arthur Cornfeld, Mark A. Stan
  • Patent number: 8680392
    Abstract: A solar cell and a method of manufacturing the same are disclosed. The solar cell includes a substrate of a first conductive type having at least one via hole, an emitter layer of a second conductive type opposite the first conductive type on the substrate, a first conductor electrically connected to the emitter layer, a second conductor electrically connected to the first conductor through the via hole, and a third conductor electrically connected to the substrate. The third conductor is electrically separated from the second conductor. A portion of the first conductor and a portion of the second conductor are positioned inside the via hole.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: March 25, 2014
    Assignee: LG Electronics Inc.
    Inventors: Juwan Kang, Jihoon Ko, Jonghwan Kim, Daehee Jang