Patents Examined by Jonathon Cook
  • Patent number: 11073424
    Abstract: A Fourier spectroscopic analyzer includes: a light receiver that receives a first wavelength component of a first wavelength band and a second wavelength component of a second wavelength band different from the first wavelength band, emits an interferogram to a sample, and outputs a first light reception signal acquired by receiving the first wavelength component and a second light reception signal acquired by receiving the second wavelength component; and a signal processing device that eliminates noise of the first wavelength component and acquires the spectrum by Fourier transform processing using the first light reception signal and the second light reception signal. The first wavelength band is a wavelength band of which a spectrum is acquired among wavelength components included in light that has passed through the sample. The interferogram is interference light and the sample is an analysis target.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: July 27, 2021
    Assignee: Yokogawa Electric Corporation
    Inventors: Yasuyuki Suzuki, Yukihiro Nakamura, Masashi Nishi, Tetsushi Namatame
  • Patent number: 11060849
    Abstract: The present disclosure discloses a dual-channel optical three-dimensional interference method based on underdetermined blind source separation, which blindly separates out, through interference data collected by a CCD camera, interference signals between surfaces of a slide under test, to solve interference signal parameters, including an interference signal amplitude-frequency and an interference signal phase-frequency. Based on a dual-channel optical three-dimensional Michelson-type interference experiment, estimation of a mixed matrix is obtained by a K-means clustering algorithm, and recovery of a source signal is achieved by a L1 norm shortest path method. It is finally achieved that laser wavenumber scanning can accurately and blindly separate out the interference signals of the four surfaces based on light intensity values collected by the CCD camera, to achieve the blind separation of the interference signals of the four surfaces.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: July 13, 2021
    Assignee: GUANDONG UNIVERSITY OF TECHNOLOGY
    Inventors: Shengli Xie, Kan Xie, Yanzhou Zhou, Haochuan Zhang
  • Patent number: 11047790
    Abstract: An enhanced single particle interferometric reflectance imaging system includes an illumination source configured to produce illumination light along an illumination path toward a target substrate. The target substrate can be configured to reflect the illuminating light along one or more collection paths toward one or more imaging sensors. The target substrate includes a base substrate having a first reflecting surface and a transparent spacer layer having a first surface in contact with the first reflecting surface and a second reflecting surface on a side opposite to the first surface. The transparent spacer layer has a predefined thickness that is determined as a function of a wavelength of the illuminating light and produces a predefined radiation pattern of optical scattering when nanoparticles are positioned on or near the second reflective surface. In addition, one or more of the collection paths can also include an amplitude mask selected to match the radiation pattern.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: June 29, 2021
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Selim M. Unlu, Oguzhan Avci, Derin Sevenler
  • Patent number: 11035782
    Abstract: A light source, a standing wave forming unit, a detector, and an absorbance calculating unit. The light source irradiates a sample with light. The standing wave forming unit forms, in the sample, an acoustic standing wave perpendicular to a surface of the sample. A node of the acoustic standing wave is positioned at a predetermined distance from the surface of the sample, the light from the light source entering the surface of the sample. The detector detects light emitted from the surface of the sample, and is disposed on the surface of the sample on a side where the light source is disposed. The absorbance calculating unit obtains absorbance.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: June 15, 2021
    Assignee: NATIONAL UNIVERSITY CORPORATION KAGAWA UNIVERSITY
    Inventor: Ichiro Ishimaru
  • Patent number: 11029141
    Abstract: A system and method for surface inspection of an object using optical coherence tomography (OCT) with anticipatory depth of field adjustment is provided. The method includes determining a present working distance and one or more forward working distances; determining a present depth of field in which the surface of the object is in focus at the location of the present working distance and at as many of the consecutive forward surface locations as determined possible; changing to the present depth of field; performing an A-scan of the object; moving the object such that the scanner head is directed at each of the consecutive forward surface locations determined to be in the present depth of field; and performing an A-scan at each of the consecutive forward surface locations determined to be in the present depth of field.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: June 8, 2021
    Assignee: SIGHTLINE INNOVATION INC.
    Inventors: Wallace Trenholm, Lorenzo Pons
  • Patent number: 11022424
    Abstract: An optical coherence tomography system, includes a swept-source laser, a Mach-Zehnder interferometer and a balanced detector. The interferometer includes a first fiber coupler, a second fiber coupler, a sample arm and a reference arm. The reference arm includes a reference arm front section, a reference arm rear section and a delay line. A tail end of the reference arm front section is connected to the reference arm rear section through the delay line. The first fiber coupler is configured to split the output light of the swept-source into a sample light and a reference light and distribute the returned sample light to the second fiber coupler. A difference between the optical path length of a parasitic reflected signal of the delay line reaching the second fiber coupler and the optical path length of the sample light is greater than 8 times the cavity length of the swept-source laser.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: June 1, 2021
    Assignee: SVISION IMAGING LIMITED
    Inventors: Xing Wei, Bingjie Huang, Jun Chen, Xianzhao Peng
  • Patent number: 11015982
    Abstract: A wavefront sensor system suitable for integration into an integrated circuit light detector may provide for wave angle sensors having varying functional relationships between the wave angle and signal to provide improved dynamic range. These wave angle sensors may be combined with integrated circuit phase angle sensors for a more complete analysis of the waveform.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: May 25, 2021
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zongfu Yu, Soongyu Yi, Dianjing Liu
  • Patent number: 11009456
    Abstract: A system including a first micro-retarder array, wherein the first micro-retarder array is configured to convert a purely polarized light of an incident light into two components. The system additionally includes an optical device, wherein the optical device is configured to collimate the two components to two foci planes. Moreover, the system includes a second micro-retarder array, wherein the second micro-retarder array is configured to combine a set of two components of the incident light, thereby producing a second purely polarized light. Further the system includes a detector, wherein the detector is configured to receive the second purely polarized light.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: May 18, 2021
    Assignee: Purdue Research Foundation
    Inventors: Garth Jason Simpson, Fengyuan Deng, Changqin Ding, Chen Li
  • Patent number: 11002620
    Abstract: A device and system for detecting dynamic strain. The device comprises a longitudinally extending carrier and an optical fiber embedded along an outer surface of a length of the carrier. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths. The system comprises the device and an interrogator comprising a laser source and a photodetector. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 11, 2021
    Assignee: Hifi Engineering Inc.
    Inventors: John Hull, Seyed Ehsan Jalilian
  • Patent number: 10990063
    Abstract: The present description may provide a method of generating a hologram measurement pattern for measuring image quality of holographic display, including: generating a test pattern and a common pattern including at least one grayscale bar; generating measurement pattern data by combining the common pattern with a frame of the test pattern; and generating the hologram measurement pattern by inserting a random phase into the measurement pattern data and an apparatus applied thereto, thereby more accurately measuring the quality of the 3D holographic image reproduced by the holographic display.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: April 27, 2021
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Jeho Nam
  • Patent number: 10989518
    Abstract: Deriving data for calibration or improving the positioning of a computer-controlled machine including a movable carrier for changing the position of a first machine part relative that of second machine part. The carrier is moved to a plurality of carrier positions such that the position of the first machine part relative to that of the second machine part changes for each of said plurality of positions. At each carrier position, a pattern generator attached to the first machine part is illuminated with at least two illuminators such that at least one spatial light pattern is created in space. Position data related to the position of said carrier is recorded and composite images of said at least one spatial light pattern is recorded in at least two different optical configurations of said at least two illuminators, said pattern generator, and at least one camera.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: April 27, 2021
    Assignee: LUMINCODE AS
    Inventor: Gudmund Slettemoen
  • Patent number: 10989517
    Abstract: A system for use in inspection of a sample is described, the system comprises: an illumination unit configured to provide coherent illumination comprising a plurality of at least two wavelengths and direct said coherent illumination onto an inspection region of a sample; and a collection unit comprising at least one detector array and configured for collecting light returning from said inspection region and generate data indicative of speckle patterns in said plurality of at least two wavelengths at a predetermined sampling rate, wherein said illumination unit is configured for directing light components of said at least two wavelengths toward corresponding two or more segments of said inspection region, and wherein said data indicative of speckle patterns corresponding with said two or more segments.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: April 27, 2021
    Assignee: CONTINUSE BIOMETRICS LTD.
    Inventors: Zeev Zalevsky, Javier Garcia
  • Patent number: 10969274
    Abstract: Method for detecting wavefront aberration for optical imaging system based on grating shearing interferometer, the grating shearing interferometer system comprising a light source and illumination system, an optical imaging system to be tested, a one-dimensional diffraction grating plate, a two-dimensional diffraction grating plate, a two-dimensional photoelectric sensor, and a computing unit. The one-dimensional and two-dimensional diffraction grating plates are respectively placed on the object plane and the image plane of the optical imaging system to be tested.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: April 6, 2021
    Assignee: Shanghai Institute of Optics And Fine Mechanics, Chinese Academy of Sciences
    Inventors: Yunjun Lu, Feng Tang, Xiangzhao Wang
  • Patent number: 10962418
    Abstract: A measuring device including a light source emitting a light beam, a first beam splitter disposed on a light path of the light beam, an optical grating, a reflector, and a sensor is provided. The light beam is divided into first and second light beams by the first beam splitter. The optical grating is disposed on light paths of the first and second light beams. The first beam splitter enables the first light beam to be delivered to the optical grating. The reflector is disposed on the light path of the second light beam. The first beam splitter enables the second light beam to be delivered to the reflector and reflected to the optical grating. The first and second light beams are diffracted by the optical grating to generate multiple first and second diffraction light beams at different angles respectively, which are received by the sensor after interference.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: March 30, 2021
    Assignee: Industrial Technology Research Institute
    Inventor: Chien-Wen Chen
  • Patent number: 10955353
    Abstract: An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 23, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Arno Jan Bleeker, Youri Johannes Laurentius Maria Van Dommelen, Mircea Dusa, Antoine Gaston Marie Kiers, Paul Frank Luehrmann, Henricus Petrus Maria Pellemans, Maurits Van Der Schaar, Cedric Desire Grouwstra, Markus Gerardus Martinus Maria Van Kraaij
  • Patent number: 10955233
    Abstract: A thickness measuring apparatus including a thickness measuring unit for measuring the thickness of a plate-shaped workpiece. The thickness measuring unit includes a white light source for emitting white light, a dispersing mechanism for producing time differences corresponding to wavelengths of light components of the white light to thereby generate spectral light, a two-dimensional image sensor having a photodetecting area for detecting the return light, the photodetecting area including a plurality of pixels, a storing section for storing the intensity of the return light detected by the plural pixels according to wavelength with time difference, a waveform table previously storing a plurality of kinds of sample spectral interference waveforms respectively corresponding to different thicknesses of the workpiece, and a thickness deciding section for deciding the thickness at an X-Y coordinate position in a two-dimensional area of the workpiece.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: March 23, 2021
    Assignee: DISCO CORPORATION
    Inventors: Nobuyuki Kimura, Keiji Nomaru
  • Patent number: 10942112
    Abstract: Exemplary apparatus and method can be provided for obtaining data regarding a plurality of samples. For example, using at least one arrangement, it is possible to receive interferometric information that is based on radiations provided from a reference and the samples that are provided in respective chambers. Alternatively and/or in addition, based on the interferometric information, it is possible to discriminate between agents to identify a particular agent that affects a particular function within at least one of the samples.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 9, 2021
    Assignees: The General Hospital Corporation, The UAB Research Foundation
    Inventors: Steven M. Rowe, Guillermo J. Tearney, Brett Eugene Bouma, Linbo Liu, Eric J. Sorscher, Kengyeh Ken Chu, Bradford James Diephuis, Eric James Wilsterman, Gregory Andrew Dierksen
  • Patent number: 10935364
    Abstract: Disclosed are systems and methods to extract information about the size and shape of an object by observing variations of the radiation pattern caused by illuminating the object with coherent radiation sources and changing the wavelengths of the source. Sensing and image-reconstruction systems and methods are described for recovering the image of an object utilizing projected and transparent reference points and radiation sources such as tunable lasers. Sensing and image-reconstruction systems and methods are also described for rapid sensing of such radiation patterns. A computational system and method is also described for sensing and reconstructing the image from its autocorrelation. This computational approach uses the fact that the autocorrelation is the weighted sum of shifted copies of an image, where the shifts are obtained by sequentially placing each individual scattering cell of the object at the origin of the autocorrelation space.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: March 2, 2021
    Inventor: Lyle G. Shirley
  • Patent number: 10935398
    Abstract: Systems and methods for sensing changes in an optical sensing fibre, principally for detecting changes in strain. A plurality of optical probe pulses at different optical frequencies (f1, f2, . . . fn) spaced by ?f are transmitted into the sensing fibre. Light backscattered from the optical sensing fibre may be mixed with delayed backscatter frequency shifted by ?f+fm where fm is a heterodyne frequency. The backscattered or mixed light may be detected to determine changes in the sensing fibre. ?f may be chosen to optimise performance.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: March 2, 2021
    Assignee: FOCUS SENSORS LTD.
    Inventors: Edward Alfred Denzil Austin, Weizhong Zhao
  • Patent number: 10928182
    Abstract: A system is provided for measuring distance or displacement, comprising: first and second laser sources configured to provide first and second laser outputs; a beam combiner configured to receive and combine at least part of the first and second laser outputs into a combined laser output; a signal calibrator configured to receive at least part of the first laser output, the second laser output, or the combined laser output, and output a calibration signal; a plurality of optical paths, including a first optical path, a second optical path, the plurality of optical paths being configured to direct at least part of the combined beam onto an optical detector to produce an interference signal; and a signal processor configured to receive the interference signal and determine a pathlength difference between the first and second optical paths.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: February 23, 2021
    Assignee: Bridger Photonics, Inc.
    Inventors: Peter Roos, Michael Thorpe, Jason Brasseur