Patents Examined by Jose K Abraham
  • Patent number: 11930710
    Abstract: A hybrid structure and a method for manufacturing a hybrid structure comprising an effective layer of piezoelectric material having an effective thickness and disposed on a supporting substrate having a substrate thickness and a thermal expansion coefficient lower than that of the effective layer includes: a) a step of providing a bonded structure comprising a piezoelectric material donor substrate and the supporting substrate, b) a first step of thinning the donor substrate to form a thinned layer having an intermediate thickness and disposed on the supporting substrate, the assembly forming a thinned structure; c) a step of heat treating the thinned structure at an annealing temperature; and d) a second step, after step c), of thinning the thinned layer to form the effective layer. The method also comprises, prior to step b), a step a?) of determining a range of intermediate thicknesses that prevent the thinned structure from being damaged during step c).
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: March 12, 2024
    Assignee: SOITEC
    Inventor: Didier Landru
  • Patent number: 11929199
    Abstract: A method of fabrication and device made by preparing a photosensitive glass substrate comprising at least silica, lithium oxide, aluminum oxide, and cerium oxide, masking a design layout comprising one or more holes to form one or more electrical conduction paths on the photosensitive glass substrate, exposing at least one portion of the photosensitive glass substrate to an activating energy source, exposing the photosensitive glass substrate to a heating phase of at least ten minutes above its glass transition temperature, cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate and etching the glass-crystalline substrate with an etchant solution to form one or more angled channels that are then coated.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: March 12, 2024
    Assignee: 3D GLASS SOLUTIONS, INC.
    Inventors: Jeb H. Flemming, Jeff Bullington, Roger Cook, Kyle McWethy
  • Patent number: 11905168
    Abstract: A manufacturing method of miniature fluid actuator is disclosed and includes the following steps. A flow-channel main body manufactured by a CMOS process is provided, and an actuating unit is formed by a deposition process, a photolithography process and an etching process. Then, at least one flow channel is formed by etching, and a vibration layer and a central through hole are formed by a photolithography process and an etching process. After that, an orifice layer is provided to form at least one outflow opening by an etching process, and then a chamber is formed by rolling a dry film material on the orifice layer. Finally, the orifice layer and the flow-channel main body are flip-chip aligned and hot-pressed, and then the miniature fluid actuator is obtained by a flip-chip alignment process and a hot pressing process.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: February 20, 2024
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Hsien-Chung Tai, Lin-Huei Fang, Yung-Lung Han, Chi-Feng Huang, Chang-Yen Tsai, Wei-Ming Lee
  • Patent number: 11888364
    Abstract: The stator manufacturing method includes a step involving, simultaneously with or after a first slot-housed portion placing step, moving a second slot-housed portion of each pair of slot-housed portions radially outward while unfolding an insulating sheet in a direction intersecting a direction of extension of folded portions of the insulating sheet, thus placing each second slot-housed portion.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: January 30, 2024
    Assignees: AISIN CORPORATION, HAYASHI KOGYOSYO CO., LTD.
    Inventors: Toru Kuroyanagi, Takahiko Hobo
  • Patent number: 11887776
    Abstract: A method includes performing a printing process that deposits a magnetic paste onto a first side and into an opening of a laminate; curing the magnetic paste to form a first transformer core piece having a first portion along the first side and a second portion filling the opening of the laminate; joining a second transformer core piece to a side of the second portion of the first transformer core piece to form a transformer. A transformer includes a laminate; a first core piece; and a second core piece, the first core piece comprising: a cured magnetic paste, a first portion along a side of the laminate, and a second portion filling an opening of the laminate, the second core piece extending along a side of the second portion of the first transformer core piece, and the laminate having windings that encircle the opening.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: January 30, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yi Yan, Zhemin Zhang, Yuki Sato, Kenji Otake, Vijaylaxmi Khanolkar
  • Patent number: 11879787
    Abstract: Disclosed is a heat sensor cable having: a conductor defining a conductor first end and a conductor body extending by a first longitudinal span from the conductor first end to a conductor second end; a coil that is non-conductive and includes a coil first end and a coil body extending by a second longitudinal span from the coil first end to a coil second end, wherein the coil surrounds the conductor from the conductor first end to the conductor second end; an outer sheath that is conductive and includes an outer sheath first end and an outer sheath body extending by a third longitudinal span from the outer sheath first end to an outer sheath second end, wherein the outer sheath surrounds the coil from the conductor first end to the conductor second end; and an eutectic salt that is disbursed between the conductor and the outer sheath.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: January 23, 2024
    Assignee: KIDDE TECHNOLOGIES, INC.
    Inventor: James Allen Varnell
  • Patent number: 11877404
    Abstract: Systems, methods, and devices related to catalyzed metal foils are disclosed. Contemplated metal foils have a bottom surface, preferably roughened to Ra of at least 0.1 ?m, bearing a catalyst material. The metal foils are etchable, typically of aluminum or derivative thereof, and is less than 500 ?m thick. Methods and systems for forming circuits from catalyzed metal foils are also disclosed. The catalyst material bearing surface of the metal foil is applied to a substrate and laminated, in some embodiments with a thermoset resin or thermoplastic resin therebetween or an organic material first coating the catalytic material. The metal foil is removed to expose the catalyst material, and a conductor is plated to the catalyst material.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: January 16, 2024
    Assignee: Averatek Corporation
    Inventor: Shinichi Iketani
  • Patent number: 11877413
    Abstract: A printed circuit board assembly (PCBA) controls an electrically initiated device (EID) in an electric field. The PCBA includes a conductive layer, a dielectric layer, and a trans-conductive layer (TCL). The conductive layer of the PCBA designated protected areas. An electrical current with a predetermined current density is impressed in the conductive layer when the PCBA is in the electric field. The TCL is a nickel-metal composite metamaterial positioned between the conductive and dielectric layers and configured to change in shape or thickness in the electric field such that the impressed current is steered away from the conductive layer and into the dielectric layer to prevent premature activation of the EID. A system includes an outer housing, power supply, an EID such as a sonobuoy or medical device, and the PCBA, all of which are encapsulated in the housing. A method is also disclosed for manufacturing the PCBA.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: January 16, 2024
    Assignee: Sparton DeLeon Springs, LLC
    Inventors: Lendon L. Bendix, Derek Turner
  • Patent number: 11864464
    Abstract: A method for polarizing a piezoelectric film is described. In this method, a piezoelectric film is formed by using an injection deposition method. The piezoelectric film is flat adhered to a surface of a conductive substrate. A polarization process is performed on the piezoelectric film while the piezoelectric film is flat adhered to the surface of the conductive substrate by generating static electricity on the adhesion surface of the piezoelectric film, and generating the static electricity on the adhesion surface of the piezoelectric film comprises using a pressurized gas to blow the adhesion surface, and the adhesion surface of the piezoelectric film is adhered to the even surface of the conductive substrate by an electrostatic adsorption method.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 2, 2024
    Assignee: CREATING NANO TECHNOLOGIES, INC.
    Inventors: Ji-Yung Lee, Andrew Ronaldi Tandio, Bo-Fan Tsai
  • Patent number: 11850416
    Abstract: Various methods of manufacture can produce three-dimensional, high density, high-electrode probe arrays that can advantageously be used in neural-based applications. In one example, deep reactive ion etched (DRIE) ultra-high aspect ratio holes are etched in silicon and refilled with multiple films to a high density array of individual probes, each probe having individual recording and/or stimulation sites or tips. Using a DRIE lag effect technique can help control tip sharpness and electrode length, allowing for narrow, long, and dense needles to be formed side-by-side in a single array. In some examples, multimodal probe arrays are manufactured, with some probes having a recording/stimulating site, other probes having a waveguide, and yet other probes having a microfluidic channel.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: December 26, 2023
    Assignee: The Regents of the University of Michigan
    Inventors: Khalil Najafi, Seyed Amin Sandoughsaz Zardini, Daniel Egert
  • Patent number: 11846882
    Abstract: Disclosed is a method for manufacturing a high-density neural probe including needles having various forms. The method, in which only a photolithography process and an etching process are used, simplifies a manufacturing process of the neural probe, minimizes changes in the characteristics of the neural probe depending on process equipment or conditions, and may thus ensure a high yield, thereby being advantageous in terms of commercialization. In addition, various forms of needles may be manufactured depending on the shape of patterns included in a mask, the height of the needles may be controlled by adjusting the size of the patterns and the gap between the patterns, and thereby, a neural probe having a plurality of needles having different heights may be manufactured.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: December 19, 2023
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Maesoon Im, Byung Chul Lee, Young Jun Yoon, Jin Soo Park, Seung Min Kwak
  • Patent number: 11849642
    Abstract: A piezoelectric artificial artery can be 3D printed to provide the real-time precise sensing of blood pressure and vessel motion patterns enabling early detection of partial occlusions. An electric-field assisted 3D printing method allows for rapid printing and simultaneously poled complex ferroelectric structures with high fidelity and good piezoelectric performance. The print material consists of ferroelectric potassium sodium niobate (KNN) particles embedded within a ferroelectric polyvinylidene fluoride (PVDF) polymer matrix.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: December 19, 2023
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Xudong Wang, Jun Li
  • Patent number: 11839397
    Abstract: The present disclosure relates to a method of making an ultrasonic surgical handpiece assembly comprising a surgical handpiece for use with an irrigation sleeve and ultrasonic tip. The surgical handpiece may comprise a piezoelectric transducer disposed within a housing and configured to manipulate the ultrasonic tip. One or more lumens and/or a flex circuit including an antenna may be disposed within the surgical handpiece housing. The lumen(s) may be configured to provide irrigation and/or aspiration to the irrigation sleeve and/or ultrasonic tip. The irrigation sleeve may comprise a second antenna configured to communicate with the ultrasonic handpiece antenna. The irrigation sleeve may further comprise and an alignment and/or coupling feature configured to removably secure the irrigation sleeve to the housing and orient the second antenna relative to the ultrasonic handpiece antenna. The irrigation sleeve may further comprise a lumen for supplying irrigation and/or aspiration to the ultrasonic tip.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: December 12, 2023
    Inventor: Colin Drewek
  • Patent number: 11839160
    Abstract: The present disclosure provides a flexible integrated array sensor and manufacturing methods thereof. The array sensor includes a silicon wafer, a readout circuit layer, a sensing array layer, and a polymer substrate layer disposed on the silicon wafer. The manufacturing method includes: preparing a silicon wafer; fabricating a plurality of function arrays, each including m*n function units, on a surface of the silicon wafer; etching one or more deep grooves on the surface of the silicon wafer between the arrays; fabricating a thinning support; and thinning a bottom surface of the silicon wafer to a target thickness so that the arrays are separated from each other. The etching depth for etching the one or more deep grooves is equal to or greater than the thickness of the silicon wafer after thinning.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: December 5, 2023
    Assignee: United Microelectronics Center Co., Ltd
    Inventors: Miao Wang, Weimong Tsang, Wenlong Jiao, Haopeng Wang, Ruifeng Yang
  • Patent number: 11825595
    Abstract: The disclosure provides a circuit board assembly, which includes a core layer, an electronic component, a first shielding ring wall, a second shielding ring wall, a first circuit layer, a second circuit layer, a first insulating layer and a plurality of shielding columns. The core layer has an accommodating space, in which the accommodating space has an inner sidewall. The electronic component is disposed in the accommodating space. The first shielding ring wall is disposed in the accommodating space and covers the inner sidewall, in which the first shielding ring wall surrounds the electronic component and is not in contact with the electronic component. The second shielding ring wall is disposed in the core layer and surrounds the first shielding ring wall. The core layer is disposed between the first circuit layer and the second circuit layer. The shielding columns are disposed in the first insulating layer.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: November 21, 2023
    Assignees: HONGQISHENG PRECISION ELECTRONICS (QINHUANGDAO) CO., LTD., GARUDA TECHNOLOGY CO., LTD.
    Inventors: Mao-Feng Hsu, Zhi-Hong Yang
  • Patent number: 11823813
    Abstract: A robotic system for laying out a specified wiring harness. A robotic arm is configured to arrange a plurality of wire segments along the harness support surface. A system controller is configured to direct the robotic arm to arrange each of the plurality of wire segments on the harness support surface along a specified wire route. A preparation device can label one or both ends of each wire segment as they are being laid out on the support surface. The labeler can automatically apply adhesive labels as flags at selected locations along the length of the wire segment. In a method of making a wiring harness, the robotic arm positions pins on a harness support surface to define wire routes and then arranges at least one wire segment on the harness support surface along each of the wire routes.
    Type: Grant
    Filed: September 19, 2020
    Date of Patent: November 21, 2023
    Assignee: WITCHITA STATE UNIVERSITY
    Inventors: Brian Brown, Michael Wescott, Alexander VanPelt
  • Patent number: 11817234
    Abstract: There is provided a wiring harness assembly comprising a main trunk cable assembly, a branch cable assembly and at least one connector. The main trunk assembly defines opposite terminal ends and comprises main trunk wires. The branch cable assembly defines opposite terminal ends and comprises branch wires. The connector connects the main trunk cable assembly and the branch cable assembly. The connector comprises an outer housing with an inner wiring harness positioned therein. The wiring harness comprises main trunk wire segments and branch wire segments interconnected at mutual connecting points. The main trunk wire segments define terminal ends connected to the main trunk wires at one of the terminal ends of the main trunk cable assembly. The branch wire segments define terminal ends connected to the branch wires at one of the terminal ends of the branch cable assembly.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 14, 2023
    Assignee: iLux electric (Cablage Kumar Inc.)
    Inventors: Rajeev Kumar, Rakesh Kumar
  • Patent number: 11818954
    Abstract: A method of manufacturing a piezoelectric actuator includes preparing a laminate including a substrate, a first electrode layer disposed on the substrate, a piezoelectric layer disposed on the first electrode layer, and a second electrode layer disposed on the piezoelectric layer, and forming a contour shape of the piezoelectric layer. The forming of the contour shape includes dry etching the piezoelectric layer from the second electrode layer side to dig the piezoelectric layer halfway in a thickness direction, covering, with a resist film, a dry etched surface formed on a side surface of the piezoelectric layer by the dry etching, and wet etching the piezoelectric layer from the second electrode layer side to dig the piezoelectric layer until the first electrode layer is reached.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: November 14, 2023
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Noboru Furuya
  • Patent number: 11817663
    Abstract: An electrical contact part comprising, a carrier substrate of a metallic material, a metallic coating applied to the carrier substrate, and a coating barrier material applied to the carrier substrate in a partial area of the carrier substrate, wherein the coating barrier material substantially prevents coating of the carrier substrate in the portion.
    Type: Grant
    Filed: January 31, 2021
    Date of Patent: November 14, 2023
    Assignee: Auto-Kabel Management GmbH
    Inventors: Oliver Scharkowski, Marie Redder
  • Patent number: 11806519
    Abstract: Connector enclosure assemblies for medical devices provide an angled lead passageway. The lead passageway which is defined by electrical connectors and intervening seals within the connector enclosure assembly establishes the angle relative to a base plane of the connector enclosure assembly. Various other aspects may be included in conjunction with the angled lead passageway, including an angled housing of the connector enclosure assembly, feedthrough pins that extend to the electrical connectors where the feedthrough pins may include angled sections, and a set screw passageway set at an angle relative to the lead passageway to provide fixation of a lead within the lead passageway.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: November 7, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Steven T. Deininger, Michael J. Baade, Charles E. Peters