Patents Examined by Julia Slutsker
  • Patent number: 11972942
    Abstract: A method of forming an integrated circuit, including first, positioning a semiconductor wafer in a processing chamber; second, exposing portions of the semiconductor wafer, including introducing a first amount of hydrogen into the processing chamber and introducing a first amount of oxygen into the processing chamber; and, third, introducing at least one of a second amount of hydrogen or a second amount of oxygen into the processing chamber, the second amount of hydrogen greater than zero and less than the first amount of hydrogen and the second amount of oxygen greater than zero and less than the first amount of oxygen.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: April 30, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mona M. Eissa, Corinne Ann Gagnet, Christopher Scott Whitesell, Pushpa Mahalingam
  • Patent number: 11968835
    Abstract: A vertical type semiconductor device includes a substrate that has a plurality of trenches, a support pattern that fills the plurality of trenches and protrudes from a top surface of the substrate, a semiconductor layer disposed on the substrate that fills a space between the support patterns, a stacked structure disposed on the support pattern and the semiconductor layer that includes a plurality of insulation layers and a plurality of first conducive patterns that are alternately and repeatedly stacked, and a plurality of channel structures that penetrate through the structure and the semiconductor layer and that extend into the support pattern. Each channel structure includes a channel layer. At least a portion of the channel layer makes contact with the semiconductor layer.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: April 23, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun-Taek Jung, Joong-Shik Shin, Byung-Kwan You
  • Patent number: 11955495
    Abstract: The present disclosure provides an image sensing module including a main board and an image sensor. The main board has a first surface and a second surface opposite to each other. The image sensor is disposed on the first surface of the main board and includes a plurality of isolation structures and a photoelectric conversion element between the plurality of isolation structures. A first angle is provided between a light incident surface of the photoelectric conversion element and the first surface of the main board, and a second angle is provided between a light beam incident to the light incident surface of the photoelectric conversion element and a normal vector of the light incident surface. The second angle is about equal to the Brewster angle at the interface of the light beam incident to the light incident surface.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: April 9, 2024
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shih-Ping Lee, Wen-Hsien Chen
  • Patent number: 11942546
    Abstract: A method includes forming an interfacial layer over a substrate; forming a quasi-antiferroelectric (QAFE) layer over the interfacial layer, in which forming the QAFE layer comprises performing an atomic layer deposition (ALD) cycle, and the ALD cycle includes performing a first sub-cycle for X time(s), in which the first sub-cycle comprises providing a Zr-containing precursor; performing a second sub-cycle for Y time(s), in which the second sub-cycle comprises providing a Hf-containing precursor; and performing a third sub-cycle for Z time(s), in which the third sub-cycle comprises providing a Zr-containing precursor, and in which X+Z is at least three times Y; and forming a gate electrode over the QAFE layer.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: March 26, 2024
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TAIWAN UNIVERSITY, NATIONAL TAIWAN NORMAL UNIVERSITY
    Inventors: Kuan-Ting Chen, Shu-Tong Chang, Min-Hung Lee
  • Patent number: 11923324
    Abstract: A semiconductor memory device includes a substrate, a memory cell array separated from the substrate, and a plurality of first bonding pad electrodes away from the memory cell array. The substrate includes a plurality of first and second regions arranged alternately. The memory cell array includes a plurality of conductive layers extending across the plurality of first and second regions, a plurality of semiconductor layers disposed in the plurality of first regions, and a plurality of first contacts disposed in the plurality of second regions. When a distance between a center position of the first bonding pad electrode and a center position of the first contact closest to the first bonding pad electrode is defined as a first distance, a difference between a largest first distance and a smallest first distance among a plurality of first distances is 400 nm or less.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: March 5, 2024
    Assignee: Kioxia Corporation
    Inventor: Masayuki Akou
  • Patent number: 11923456
    Abstract: A semiconductor device includes channels, a gate structure, and a source/drain layer. The channels are disposed at a plurality of levels, respectively, and spaced apart from each other in a vertical direction on an upper surface of a substrate. The gate structure is disposed on the substrate, at least partially surrounds a surface of each of the channels, and extends in a first direction substantially parallel to the upper surface of the substrate. The source/drain layer is disposed at each of opposite sides of the gate structure in a second direction substantially parallel to the upper surface of the substrate and substantially perpendicular to the first direction and is connected to sidewalls of the channels. A length of the gate structure in the second direction changes along the first direction at a first height from the upper surface of the substrate in the vertical direction.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: March 5, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-Gil Yang, Beom-Jin Park, Seung-Min Song, Geum-Jong Bae, Dong-Il Bae
  • Patent number: 11923244
    Abstract: Embodiments of the present disclosure generally relate to subtractive metals, subtractive metal semiconductor structures, subtractive metal interconnects, and to processes for forming such semiconductor structures and interconnects. In an embodiment, a process for fabricating a semiconductor structure is provided. The process includes performing a degas operation on the semiconductor structure and depositing a liner layer on the semiconductor structure. The process further includes performing a sputter operation on the semiconductor structure, and depositing, by physical vapor deposition, a metal layer on the liner layer, wherein the liner layer comprises Ti, Ta, TaN, or combinations thereof, and a resistivity of the metal layer is about 30 ??·cm or less.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: March 5, 2024
    Assignee: Applied Materials, Inc.
    Inventors: He Ren, Hao Jiang, Shi You, Mehul B. Naik
  • Patent number: 11916099
    Abstract: A semiconductor device is provided. The semiconductor device includes: a first conductive electrode; a first dielectric stack structure provided on the first conductive electrode; a second conductive electrode provided on the first dielectric stack structure; a second dielectric stack structure provided on the second conductive electrode; and a third conductive electrode provided on the first dielectric stack structure, wherein each of the first dielectric stack structure and the second dielectric stack structure include a first dielectric layer comprising a first material; a second ferroelectric dielectric layer comprising a second material and provided on the first dielectric layer, and a third dielectric layer comprising a third material and provided on the second ferroelectric dielectric layer.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: February 27, 2024
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Reinaldo Vega, David Wolpert, Cheng Chi, Praneet Adusumilli
  • Patent number: 11894240
    Abstract: A system for processing semiconductor wafers, the system including: a processing chamber; a heat source; a substrate holder configured to expose a semiconductor wafer to the heat source; a first electrode configured to be detachably coupled to a first major surface of a semiconductor wafer; and a second electrode coupled to the substrate holder, the first electrode and the second electrode together configured to apply an electric field in the semiconductor wafer.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: February 6, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: David Hurley, Ioan Domsa, Ian Colgan, Gerhardus Van Der Linde, Patrick Hughes, Maciej Burel, Barry Clarke, Mihaela Ioana Popovici, Lars-Ake Ragnarsson, Gerrit J. Leusink, Robert Clark, Dina Triyoso
  • Patent number: 11895883
    Abstract: A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 6, 2024
    Assignee: Apple Inc.
    Inventors: Cheng-Ho Yu, Chin-Wei Lin, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shih-Chang Chang, Yu Cheng Chen, John Z. Zhong
  • Patent number: 11887845
    Abstract: A method for producing a three-dimensional structure, a method for producing a vertical transistor, a vertical transistor wafer, and a vertical transistor substrate, capable of suppressing the emission of Si due to a heat treatment and making an interface between an oxide film and a core mainly consisting of Si relatively smooth include: forming a three-dimensional shape by processing (for example, by etching) a surface layer of a monocrystalline silicon substrate, the surface layer having an oxygen concentration of 1×1017 atoms/cm3 or more; and then forming an oxide film on the surface of the three-dimensional shape by performing a heat treatment. The three-dimensional structure has a shape having projections and recesses in a thickness direction of the silicon substrate, and a height in the thickness direction of the silicon substrate is between 1 nm and 1000 nm, and preferably between 1 nm and 100 nm.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: January 30, 2024
    Assignees: GLOBALWAFERS JAPAN CO., LTD., TOHOKU UNIVERSITY
    Inventors: Kazutaka Kamijo, Etsuo Fukuda, Takashi Ishikawa, Koji Izunome, Moriya Miyashita, Takao Sakamoto, Tetsuo Endoh
  • Patent number: 11886120
    Abstract: Embodiments disclosed herein include methods of depositing a metal oxo photoresist using dry deposition processes. In an embodiment, the method comprises forming a first metal oxo film on the substrate with a first vapor phase process including a first metal precursor vapor and a first oxidant vapor, and forming a second metal oxo film over the first metal oxo film with a second vapor phase process including a second metal precursor vapor and a second oxidant vapor.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: January 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Lakmal Charidu Kalutarage, Mark Joseph Saly, Bhaskar Jyoti Bhuyan, Thomas Joseph Knisley, Kelvin Chan, Regina Germanie Freed, David Michael Thompson, Susmit Singha Roy, Madhur Sachan
  • Patent number: 11881401
    Abstract: A directional patterning method includes following steps. A substrate is provided with a mask layer thereon, and the mask layer has at least one opening pattern therein. A cyclic deposition and etching process is performed to increase a length of the at least one opening pattern.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: January 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chin Chang, Li-Te Lin, Ru-Gun Liu, Wei-Liang Lin, Pinyen Lin, Yu-Tien Shen, Ya-Wen Yeh
  • Patent number: 11875992
    Abstract: Semiconductor devices are provided. A semiconductor device includes a first portion of a lower electrode structure on a substrate. The semiconductor device includes a first support pattern being in contact with a first portion of a sidewall of the first portion of the lower electrode structure. The semiconductor device includes a second portion of the lower electrode structure on a second portion of the sidewall of the first portion of the lower electrode structure. The semiconductor device includes an upper electrode on the second portion of the lower electrode structure and on the first support pattern. Moreover, the semiconductor device includes a dielectric layer between the upper electrode and the second portion of the lower electrode structure.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: January 16, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Suk Lee, Jungoo Kang, Gihee Cho, Sanghyuck Ahn
  • Patent number: 11876122
    Abstract: A method of forming a semiconductor device. A substrate having a fin structure is provided. A dummy gate is formed on the fin structure. A polymer block is formed adjacent to a corner between the dummy gate and the fin structure. The polymer block is subjected to a nitrogen plasma treatment, thereby forming a nitridation layer in proximity to a sidewall of the dummy gate under the polymer block. After subjecting the polymer block to the nitrogen plasma treatment, a seal layer is formed on the sidewall of the dummy gate and on the polymer block. An epitaxial layer is then grown on a source/drain region of the fin structure. The dummy gate is then replaced with a metal gate.
    Type: Grant
    Filed: November 27, 2022
    Date of Patent: January 16, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Wei Chang, Chia-Ming Kuo, Po-Jen Chuang, Fu-Jung Chuang, Shao-Wei Wang, Yu-Ren Wang, Chia-Yuan Chang
  • Patent number: 11862460
    Abstract: According to one embodiment, a method of producing a SiC laminate having a hexagonal SiC layer and a 3C-SiC layer comprises: forming a seed plane parallel to a close-packed plane of the crystal lattice on the surface of the hexagonal SiC layer; providing an inclined plane, which is inclined with respect to the seed plane, to all faces adjacent to the seed plane; forming a two-dimensional nucleus of 3C-SiC on the seed plane; and epitaxially growing both the two-dimensional nucleus of 3C-SiC and the SiC layers exposed on the inclined plane simultaneously in a direction parallel to the close-packed plane of the crystal lattice.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: January 2, 2024
    Assignee: CUSIC INC.
    Inventor: Hiroyuki Nagasawa
  • Patent number: 11862726
    Abstract: A transistor includes an insulating layer, a source region, a drain region, a channel layer, a ferroelectric layer, an interfacial layer, and a gate electrode. The source region and the drain region are respectively disposed on two opposite ends of the insulating layer. The channel layer is disposed on the insulating layer, the source region, and the drain region. The ferroelectric layer is disposed over the channel layer. The interfacial layer is sandwiched between the channel layer and the ferroelectric layer. The gate electrode is disposed on the ferroelectric layer.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chang Sun, Sheng-Chih Lai, Yu-Wei Jiang, Kuo-Chang Chiang, Tsuching Yang, Feng-Cheng Yang, Chung-Te Lin
  • Patent number: 11854864
    Abstract: A semiconductor device includes a plurality of patterns defined between a plurality of trenches and disposed on a substrate. A leaning control layer is disposed on sidewalls and bottoms of the plurality of trenches. A gap-fill insulating layer is disposed on the leaning control layer. At least one of the plurality of trenches has a different depth from one of the plurality of trenches adjacent thereto.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: December 26, 2023
    Inventors: Juyeon Kim, Hanmei Choi, Sukjin Chung, Bongjin Kuh, Changyong Kim, Hakyu Seong
  • Patent number: 11855103
    Abstract: According to one embodiment, a semiconductor device includes an insulating substrate, a first semiconductor layer located above the insulating substrate, a second semiconductor layer located above the insulating substrate, an insulating layer which covers the first semiconductor layer and the second semiconductor layer, and includes a first contact hole reaching the first semiconductor layer and a second contact hole reaching the second semiconductor layer, a barrier layer which covers one of the first semiconductor layer inside the first contact hole and the second semiconductor layer inside the second contact hole, and a first conductive layer which is in contact with the barrier layer.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: December 26, 2023
    Assignee: Japan Display Inc.
    Inventors: Akihiro Hanada, Masayoshi Fuchi
  • Patent number: 11842925
    Abstract: The present application discloses method for fabricating a conductive feature and a method for fabricating a semiconductor device. The method includes providing a substrate; forming a recess in the substrate; conformally forming a first nucleation layer in the recess; performing a post-treatment to the first nucleation layer; and forming a first bulk layer on the first nucleation layer to fill the recess. The first nucleation layer and the first bulk layer configure the conductive feature. The first nucleation layer and the first bulk layer include tungsten. The post-treatment includes a borane-containing reducing agent.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: December 12, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Che-Hsien Liao, Yu-Chang Chang