Patents Examined by Juliana Cross
-
Patent number: 11762088Abstract: A radar apparatus includes a plurality of transmit antennas that transmits a plurality of transmission signals using a multiplexing transmission, and a transmission circuit that applies phase rotation amounts corresponding to combinations of Doppler shift amounts and code sequences to the plurality of transmission signals. Each of the plurality of transmission signals is assigned a different combination among the combinations. The combinations include at least one combination of different numbers of multiplexing by the code sequences.Type: GrantFiled: July 21, 2022Date of Patent: September 19, 2023Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Takaaki Kishigami, Kenta Iwasa, Hidekuni Yomo
-
Patent number: 11747466Abstract: Aspects presented herein may enable a wireless device to perform an SL ranging based on a single-sided PRS transmission. In one aspect, a first wireless device transmits one or more reference signals to at least one RIS associated with a second wireless device. The first wireless device receives one or more reflected reference signals reflected from the at least one RIS. The first wireless device calculates a signal RTT based on the one or more reference signals and the one or more reflected reference signals. In another aspect, a second wireless device transmits, to a first wireless device, information indicating a time, a duration, or a periodicity in which at least one RIS associated with the second wireless device is to be activated. The second wireless device activate the at least one RIS based on the information.Type: GrantFiled: August 23, 2021Date of Patent: September 5, 2023Assignee: QUALCOMM IncorporatedInventors: Shuanshuan Wu, Junyi Li, Kapil Gulati, Anantharaman Balasubramanian, Sourjya Dutta
-
Patent number: 11747464Abstract: Agricultural detection device, having a sensor unit, an evaluation unit and a control unit. The sensor unit includes a first sensor with a first directivity and is configured to emit a first transmission signal and to receive a first reflection signal. The first sensor has a second directivity and emits a second sensor signal with the second directivity and receives a second reflection signal, or the sensor unit has a second sensor with a second directivity arranged adjacent to the first sensor for emitting the second transmission signal and for receiving the second reflection signal. The evaluation unit is configured to ascertain at least the structure of plants and a height value from the first reflection signal and the second reflection signal.Type: GrantFiled: August 5, 2019Date of Patent: September 5, 2023Assignee: Pepperl + Fuchs SEInventors: Ernst Luber, Philipp Seitz
-
Patent number: 11740314Abstract: A method measures an angle of arrival (AOA) of an incoming signal using m separate antennas coupled via a switch with a single receiving device. The switch sequentially supplies the incoming signal to the receiver. A sampling of the incoming signal as received at the antennas has a sampling rate and cycle time performed in repetitive cycles. The receiver generates baseband signals with in-phase and quadrature components from the incoming signal and forwarding to each analog-to-digital converter to provide digitized samples. A signal processor is coupled to the respective analog-to-digital converter to analyze the digitized signals and to determine the angle of arrival of the incoming signal. The resulting phase error is compensated by sampling and signal processing. A device operates according to the method and an arrangement with a mobile transmitter and a device and software for locating the mobile transmitter by the device.Type: GrantFiled: November 26, 2019Date of Patent: August 29, 2023Assignee: SAFECTORY GMBHInventors: Christian Dorn, Stefan Erhardt
-
Patent number: 11733374Abstract: A smart radar data mining and target location corroboration system has a target incident processing system (TIPS) and target information system (TIS) that provide corroborating radar data in response to target incident data, to assist search and response personnel in responding to high-risk safety or security incidents involving an uncooperative vessel or aircraft. The TIPS rapidly mines large volumes of historical radar track data, accessible through the TIS, to extract corroborating radar data pertinent to the target incident data. The corroborating radar data include trajectories, last known radar position (LKRP) or first known radar position (FKRP) information believed to be associated with the target incident data.Type: GrantFiled: February 9, 2021Date of Patent: August 22, 2023Assignee: ACCIPITER RADAR TECHNOLOGIES INC.Inventor: Timothy J. Nohara
-
Patent number: 11693088Abstract: A method and a device for separating echo signals of STWE SAR in elevation are provided. The method includes that: aliasing echo signals of multiple sub-swaths are received; for a target sub-swath of the multiple sub-swaths, multiple sub-beams associated with the target sub-swath are generated, the multiple sub-beams pointing to different directions of the target sub-swath respectively, and a null of each of the multiple sub-beams being used for deep nulling suppression on echo signals of sub-swaths except the target sub-swath; and the aliasing echo signals are processed based on the multiple sub-beams and multiple nulls corresponding to the multiple sub-beams to generate a target echo signal of the target sub-swath.Type: GrantFiled: August 24, 2020Date of Patent: July 4, 2023Assignee: Institute of Electronics, Chinese Academy of SciencesInventors: Yu Wang, Qingchao Zhao, Yi Zhang, Wei Wang, Yunkai Deng, Weidong Yu, Yashi Zhou
-
Patent number: 11693106Abstract: Methods for detecting radar targets are provided. According to one exemplary embodiment, the method includes providing a digital radar signal having a sequence of signal segments. Each signal segment of the sequence is respectively associated with a chirp of a transmitted RF radar signal. The method further includes detecting one or more radar targets based on a first subsequence of successive signal segments of the sequence. For each detected radar target, a distance value and a velocity value are determined. If a group of radar targets having overlapping signal components has been detected, a respective spectral value is calculated for each radar target of the group of radar targets based on a second subsequence of the sequence of signal segments and further based on the velocity values ascertained for the group of radar targets.Type: GrantFiled: November 6, 2019Date of Patent: July 4, 2023Assignee: Infineon Technologies AGInventors: Oliver Lang, Michael Gerstmair, Alexander Melzer, Christian Schmid
-
Patent number: 11656321Abstract: A method of microwave motion detection with adaptive frequency control, for a microwave motion sensor, comprises suppressing output of the first detecting signal generated with a first frequency, determining whether a first interference signal is detected in the first frequency during the suppressing, responsive to that the first interference signal is detected in the first frequency, generating a second detecting signal with a second frequency, which is different from the first frequency, and suppressing output of the second detecting signal, determining whether a second interference signal is detected in the second frequency during the suppressing, and responsive to that the second interference signal is not detected in the second frequency, outputting the second detecting signal for motion detection. The microwave motion sensor is operated in a normal mode or in a detection mode according to the first detecting signal, a reflected signal, the second detecting signal and an interference signal.Type: GrantFiled: June 26, 2019Date of Patent: May 23, 2023Assignee: RichWave Technology Corp.Inventor: Tse-Peng Chen
-
Patent number: 11650286Abstract: A method for separating large and small targets from noise in radar IF signals, according to which a receiver receives, echo signals that are reflected from targets of different size (such as walls or ground), in response to the transmission of chirp FMCW radar signals, modulated (e.g., using Linear Frequency Modulation) in a predetermined modulation speed for a predetermined duration. The echo signals are down-converted by mixing them with the transmitted signal, to obtain received Intermediate Frequency (IF) signal, which is then sampled both in phase (I-channel) and in quadrature phase (Q-channel). The received IF signal passes a Fourier transform, to obtain power spectral components that belong to a relevant frequency domain, associated with an echo signal reflected from a real target, along with corresponding power spectral components that belong to an irrelevant, opposite frequency domain.Type: GrantFiled: January 24, 2018Date of Patent: May 16, 2023Inventor: Ronit Roxana Fuchs
-
Patent number: 11644560Abstract: Techniques for target tracking that include obtaining state information for a first target object, the state information including previous location information for the first target object and a previous group distribution for points associated with the first target object at a previous point in time, predicting a location for the first target object based on the obtained state information, receiving a first set of points, identifying a first distribution of points, from the first set of points based on the predicted location to associate one or more first points of the first distribution of points with the target object, determining a current group distribution for the points associated with the first target object, and outputting a current location information and a current group distribution point.Type: GrantFiled: June 24, 2020Date of Patent: May 9, 2023Assignee: Texas Instmments IncorporatedInventors: Michael Livshitz, Mingjian Yan
-
Patent number: 11619536Abstract: A level radar device with adaptive, angle-dependent transmission power adjustment, which calculates the maximum permissible transmission power of the transmitted signal on the basis of the radiation direction of the transmitted signal and the radiation characteristic of an antenna.Type: GrantFiled: May 8, 2020Date of Patent: April 4, 2023Assignee: VEGA GRIESHABER KGInventors: Roland Welle, Michael Fischer, Uwe Wegemann, Ralf Reimelt
-
Patent number: 11614539Abstract: Provided are an apparatus and a method for removing noise for observation information of a weather radar, and more particularly, an apparatus and a method for removing noise for observation information of a weather radar capable of separating and removing second trip echoes corresponding to noise from precipitation echoes by simulating the reflectivity of the second trip echoes caused by a distance folding phenomenon shown in weather observation information generated using a weather radar. According to the present invention, in order to remove the second trip echo that occurs in the observation information measured in the volume observation radius during weather observation by setting the weather radar as the volume observation radius where the second trip echo occurs, the weather radar is set as a long-range observation radius in which a second trip echo exceeding the volume viewing radius does not occur.Type: GrantFiled: April 16, 2021Date of Patent: March 28, 2023Assignee: Korea Meteorological AdministrationInventors: Young-A Oh, Hae Lim Kim, Mi-Kyung Suk
-
Patent number: 11592548Abstract: Methods, apparatus, systems and articles of manufacture are disclosed to improve Doppler velocity estimation. An example apparatus is disclosed including a transmitter to transmit a first sweep signal at a first position in a first block of time during a transmit time sequence pattern, and transmit a second sweep signal at a second position in a second block of time during the transmit time sequence pattern, the second position different than the first position. The example apparatus also includes a velocity analyzer to determine a velocity and a direction of arrival of a target object identified during the transmit time sequence pattern.Type: GrantFiled: September 27, 2019Date of Patent: February 28, 2023Assignee: Intel CorporationInventors: Saiveena Kesaraju, Arnaud Amadjikpe, Chulong Chen
-
Patent number: 11592547Abstract: Techniques and apparatuses are described that implement a smart-device-based radar system capable of detecting user gestures in the presence of saturation. In particular, a radar system 104 employs machine learning to compensate for distortions resulting from saturation. This enables gesture recognition to be performed while the radar system 104's receiver 304 is saturated. As such, the radar system 104 can forgo integrating an automatic gain control circuit to prevent the receiver 304 from becoming saturated. Furthermore, the radar system 104 can operate with higher gains to increasing sensitivity without adding additional antennas. By using machine learning, the radar system 104's dynamic range increases, which enables the radar system 104 to detect a variety of different types of gestures having small or large radar cross sections, and performed at various distances from the radar system 104.Type: GrantFiled: February 28, 2019Date of Patent: February 28, 2023Assignee: Google LLCInventors: Changzhan Gu, Jaime Lien, Nicholas Edward Gillian, Jian Wang
-
Patent number: 11567183Abstract: A multiple input multiple output (MIMO) radar system for detecting a moving object is based on an explicit signal model. The explicit signal model accounts for waveform separation residuals by relating measurements of the virtual array to an auto-term including a Kronecker product of object-receiver signatures and transmitter-object signatures; and a cross-term including a Kronecker product of object-receiver signatures and transmitter-object residual signatures. The radar system uses a spatial MIMO object detector that is based on the explicit signal model to detect the moving object.Type: GrantFiled: April 8, 2020Date of Patent: January 31, 2023Assignee: Mitsubishi Electric Research Laboratories, Inc.Inventors: Pu Wang, Petros Boufounos, Hassan Mansour, Philip Orlik
-
Patent number: 11567184Abstract: An operation method performed by an apparatus for detecting multiple targets may comprise transmitting first signals using Mt transmit antennas included in the apparatus; receiving the first signals reflected by the multiple targets through Mr receive antennas included in the apparatus; generating a first function for estimating a velocity and an azimuth of each of the multiple targets using the first signals and the reflected first signals; estimating a velocity and an azimuth that maximize a result of the first function as a velocity and an azimuth of a first target closest to the apparatus among the multiple targets; generating a second function by cancelling interference caused by the first target from the first function; and estimating a velocity and an azimuth that maximize a result of the second function as a velocity and an azimuth of a second target among the multiple targets.Type: GrantFiled: August 23, 2019Date of Patent: January 31, 2023Assignees: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE, PUKYONG NATIONAL UNIVERSITY INDUSTRY-UNIVERSITY COOPERATION FOUNDATIONInventors: Sung Hyun Hwang, Woo Jin Byun, Sung Jin Yoo, Jae Hyun Park
-
Patent number: 11550049Abstract: Radar based HR and BR measurements by simultaneous decoding is a technical problem due to presence of intermodulation of BR and HR harmonics, which degrades simultaneous decoding. Embodiments herein provide a method and system for unobtrusive liveliness detection and monitoring of a subject using a Dual Frequency Radar (DFR) in an IOT network. The system has the capability to completely process the captured raw signals onboard to by applying required signal conditioning and extraction of relevant information using unique signal processing techniques for determining the HR and the BR of the subject accurately. The intermodulation of BR and HR harmonics is eliminated by the system by performing frequency spectrum averaging of both radars signals, which improves the accuracy. Further, the system is configured with a light MQTT protocol and encoding modules for any data to be shared for off board processing, ensuring data security and privacy compliance.Type: GrantFiled: November 25, 2020Date of Patent: January 10, 2023Assignee: Tata Consultancy Services LimitedInventors: Anwesha Khasnobish, Arindam Ray, Smriti Rani, Amit Swain, Chirabrata Bhaumik, Tapas Chakravarty
-
Patent number: 11531099Abstract: Systems and methods for detection and reporting of small targets to an operational area. Exemplary embodiments are presented to detect targets such as avian species, UAS, UAV, and drones, and transmit unique small target identifier information via data link, such as ADS-B, to an operational area.Type: GrantFiled: January 23, 2018Date of Patent: December 20, 2022Assignee: Ohio UniversityInventors: Chris G. Bartone, Anthony Milluzzi
-
Patent number: 11428805Abstract: Radar transmitter includes a plurality of transmit antennas that transmit a plurality of transmission signals using a multiplexing transmission, and a transmission circuit. The transmission circuit applies phase rotation amounts corresponding to combinations of Doppler shift amounts and code sequences to the plurality of transmission signals. Each of the combinations of the Doppler shift amounts and the code sequences has at least one different from other combination. The number of multiplexes of the code sequence corresponding to at least one of the Doppler shift amounts in the combinations is different from the number of multiplexing of code sequences corresponding to the remaining Doppler shift amounts.Type: GrantFiled: June 11, 2020Date of Patent: August 30, 2022Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Takaaki Kishigami, Kenta Iwasa, Hidekuni Yomo
-
Patent number: 11428798Abstract: A Frequency Modulated Continuous Wave, FMCW, radar system that includes one or more antennas configured to transmit and receive FMCW radar wave signals for scanning for objects within a full circular detection coverage range, and processing circuitry configured to provide scan data based on transmitted and received FMCW radar signals and azimuth position of the antenna(s). The processing circuitry is configured to generate first type radar plots that holds range, radial velocity and return energy data for one or more detected objects, and second type radar plots that holds azimuth, range and return energy data for one or more detected objects. The processing circuitry is also configured to generate full data type radar plots by combining first and second type radar plots having corresponding range data, whereby each full data type radar plot holds azimuth, range, radial velocity and return energy data for one or more detected objects.Type: GrantFiled: November 2, 2018Date of Patent: August 30, 2022Assignee: ROBIN RADAR FACILITIES BVInventors: Wouter Keijer, Gerben Pakkert