Abstract: The present invention refers to a mineral matter powder preparation by wet process without acrylic additive or other grinding aid additives and to the use of said mineral matter after an optional hydrophobic treatment. Said mineral material having superior dispersing properties.
Type:
Grant
Filed:
May 14, 2019
Date of Patent:
January 17, 2023
Assignee:
Omya International AG
Inventors:
Pierre Blanchard, Jean-Pierre Elgoyhen, Beat Karth, Holger Müller, Jürgen Spehn, Martin Brunner, Pascal Gonnon, Michael Tinkl
Abstract: Disclosed is a ruthenium-based catalyst for ammonia synthesis, preparation method and use thereof. The ruthenium-based catalyst comprises Ru—Ba-A core-shell structure which comprises a ruthenium nanoparticle as a core covered with a first shell and a second shell sequentially, wherein the first shell consists of a barium nanoparticle, and the second shell consists of a metal oxide. The Ru—Ba-A core-shell structure can effectively preventing agglomerations of ruthenium nanoparticles during the use of the catalyst and avoiding direct contact between the ruthenium nanoparticles and the metal oxides. In addition, barium nanoparticles have a promoting effect as an electronic promoter, which can effectively improve the stability and catalytic activity of ruthenium-based catalyst for ammonia synthesis, especially in the system for synthesizing ammonia from a coal gas.
Type:
Grant
Filed:
May 15, 2020
Date of Patent:
December 6, 2022
Inventors:
Lilong Jiang, Jun Ni, Jianxin Lin, Shengbao He, Ke Lin, Bingyu Lin, Xingyi Lin
Abstract: Methods of producing an isomerization catalyst include preparing a catalyst precursor solution, hydrothermally treating the catalyst precursor solution to produce a magnesium oxide precipitant, and calcining the magnesium oxide precipitant to produce the isomerization catalyst. The catalyst precursor solution includes at least a magnesium precursor, a hydrolyzing agent, and polyethylene glycol. Methods of producing propene from a butene-containing feedstock with the isomerization catalyst and a metathesis catalyst are also disclosed.
Type:
Grant
Filed:
December 3, 2019
Date of Patent:
December 6, 2022
Assignee:
Saudi Arabian Oil Company
Inventors:
Afnan Alghannam, Sohel K. Shaikh, Munir D. Khokhar, Faisal H. Alshafei
Abstract: An ultra-stable catalyst composition for hydroprocessing hydrocarbon feedstocks and a method of making and use of the ultra-stable catalyst composition. The catalyst composition of the invention comprises a calcined mixture made by calcining a formed particle of a mixture comprising an inorganic oxide material, molybdenum trioxide, and a nickel compound; wherein the calcined mixture is further overlaid with a cobalt component and a molybdenum component to thereby provide the catalyst composition.
Type:
Grant
Filed:
February 18, 2020
Date of Patent:
November 15, 2022
Assignee:
SHELL USA, INC.
Inventors:
Opinder Kishan Bhan, David Andrew Komar
Abstract: Disclosed herein are composite materials and methods of making and use thereof. The composite materials disclosed herein can comprise: a first metal oxide particle having a thermal stability and a specific reversible oxygen storage capacity, wherein the first metal oxide particle comprises a first metal oxide comprising a transition metal oxide; and a second metal oxide disposed on the first metal oxide particle; wherein the composite material has a thermal stability and a specific reversible oxygen storage capacity; and wherein the thermal stability of the composite material is greater than the thermal stability of the first metal oxide particle. The methods of use of the composite materials described herein can comprise using the composite material as a catalyst, as an oxygen carrier, as a catalyst support, in a fuel cell, in a catalytic converter, or a combination thereof.
Type:
Grant
Filed:
October 4, 2019
Date of Patent:
November 1, 2022
Assignee:
The Board of Trustees of The University of Alabama
Inventors:
Qing Peng, Ruigang Wang, Haoming Yan, Zhongqi Liu
Abstract: A method for ammonia decomposition to produce hydrogen, the method comprising the steps of introducing an ammonia stream to a reactor, wherein the ammonia stream comprises ammonia, wherein the reactor comprises a cobalt-based catalyst, the cobalt-based catalyst comprising 15 wt % and 70 wt % of cobalt, 5 wt % and 45 wt % of cerium, and 0.4 wt % and 0.5 wt % barium, wherein a remainder of weight of the cobalt-based catalyst is oxygen; contacting the ammonia in the ammonia stream with the cobalt-based catalyst, wherein the cobalt-based catalyst is operable to catalyze an ammonia decomposition reaction; catalyzing the ammonia decomposition reaction to cause the ammonia decomposition in the presence of the cobalt-based catalyst to produce hydrogen; and withdrawing a product stream from the reactor, the product stream comprising hydrogen.
Type:
Grant
Filed:
February 4, 2020
Date of Patent:
October 25, 2022
Assignees:
Saudi Arabian Oil Company, King Abdullah University of Science and Technology
Inventors:
Jorge Gascon, Salvador Sayas, Natalia Morlanes, Sai Katikaneni, Aadesh Harale, Bandar Solami
Abstract: A supported catalyst having rhodium particles with an average diameter of less than 1 nm disposed on a support material containing magnetic iron oxide (e.g. Fe3O4). A method of producing the supported catalyst and a process of reducing nitroarenes to corresponding aromatic amines employing the supported catalyst with a high product yield are also described. The supported catalyst may be recovered with ease using an external magnet and reused.
Type:
Grant
Filed:
March 20, 2019
Date of Patent:
September 27, 2022
Assignee:
King Fahd University of Petroleum and Minerals
Abstract: An efficient catalyst for the synthesis of methanol by catalytic hydrogenation of carbon dioxide is provided. A process for the preparation of the catalyst by self-combustion of a gel and a process for the synthesis of methanol by catalytic hydrogenation of carbon dioxide are also presented. The catalyst has the following formula (Cu)x(ZnO)y(ZrO2)z supported on mesoporous silica.
Type:
Grant
Filed:
February 7, 2019
Date of Patent:
September 20, 2022
Assignee:
SOTACARBO—SOCIETA TECHNOLOGIE AVANZATE LOW CARBON S.P.A.
Inventors:
Mauro Mureddu, Francesca Ferrara, Alberto Pettinau
Abstract: A method for producing a catalyst for a fuel cell comprising: a) injecting carbon particles into a fluidized bed reactor; b) evacuating the fluidized bed reactor to form a base pressure; c) introducing a catalytic metal precursor together with a carrier gas into the fluidized bed reactor to contact the catalytic metal precursor with the carbon particles; d d) purging a purge gas into the fluidized bed reactor; e) introducing a reaction gas into the fluidized bed reactor to attach the catalytic metal precursor to the carbon particles; and f) purging a purge gas into the fluidized bed reactor, wherein, the catalytic metal is attached to the carbon particles in a form of nano-sized spot.
Type:
Grant
Filed:
November 11, 2019
Date of Patent:
September 6, 2022
Assignees:
HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, PUSAN NATIONAL UNIVERSITY INDUSTRY-UNIVERSITY COOPERATION FOUNDATION
Inventors:
Woong Pyo Hong, Se Hun Kwon, Woo Jae Lee
Abstract: Disclosed are a Fischer-Tropsch synthesis catalyst, a preparation method therefor and use thereof in a Fischer-Tropsch synthesis reaction. Wherein the catalyst comprises: an active component, being at least one selected from VIIIB transition metals; an optional auxiliary metal; and a nitride carrier having a high specific surface area. The catalyst is characterized in that the active metal is supported on the nitride carrier having the high specific surface, such that the active component in the catalyst is highly dispersed. The catalyst has a high hydrothermal stability, an excellent mechanical wear resistance, a high Fischer-Tropsch synthesis activity and an excellent high-temperature stability.
Abstract: The present disclosure relates to chromium-on-alumina dehydrogenation catalyst materials, to methods for making such catalysts, and to methods for dehydrogenating hydrocarbons using such catalysts. In one aspect, the disclosure provides a method for preparing a dehydrogenation catalyst material, the method comprising impregnating a chromium-on-alumina material with ascorbic acid, one or more of sodium, lithium and potassium (e.g., sodium), and chromium; and calcining the impregnated material to provide the dehydrogenation catalyst material comprising chromium in the range of 2.5 wt. % to about 35 wt. % and having no more than 100 ppm chromium(VI).
Abstract: The present invention relates to a porous iron oxide-zirconia composite catalyst, a preparation method thereof, and a method for producing alcohol using the same, and the iron oxide-zirconia composite catalyst having a porous structure may produce alcohol at low cost by carrying out an excellent methane reforming reaction even under room temperature and room pressure conditions through an electrochemical reaction.
Abstract: Provided in this disclosure are catalyst compositions. The catalyst compositions include an oxidative dehydrogenation catalyst that includes a mixed metal oxide having the empirical formula: Mo1.0V0.12-0.49Te0.05-0.17Nb0.10-0.20AlcOd wherein c is from 0 to 2.0 and d is a number to satisfy the valence of the oxide. The compositions are at least 40 wt. % amorphous as measured by XRD. The disclosure also provides methods of making the compositions.
Type:
Grant
Filed:
August 1, 2019
Date of Patent:
August 16, 2022
Assignee:
NOVA Chemicals (International) S.A.
Inventors:
Vasily Simanzhenkov, Xiaoliang Gao, Marie Barnes, David Sullivan, Yoonhee Kim
Abstract: To provide a hexagonal boron nitride powder which contains agglomerates, has a maximum torque calculated by measuring in accordance with JIS-K-6217-4 of 0.20 to 0.50 Nm, a DBP absorption rate of 50 to 100 ml/100 g, a tap bulk density of 0.66 to 0.95 g/cm3 and reduced anisotropy of heat conduction and can provide high heat conductivity and dielectric strength to a resin composition produced by filling a resin therewith and a process for producing the powder by carrying out a reduction nitriding reaction using boron carbide.
Abstract: Methods for making a supported chromium catalyst are disclosed, and can comprise contacting a silica-coated alumina containing at least 30 wt. % silica with a chromium-containing compound in a liquid, drying, and calcining in an oxidizing atmosphere at a peak temperature of at least 650° C. to form the supported chromium catalyst. The supported chromium catalyst can contain from 0.01 to 20 wt. % chromium, and typically can have a pore volume from 0.5 to 2 mL/g and a BET surface area from 275 to 550 m2/g. The supported chromium catalyst subsequently can be used to polymerize olefins to produce, for example, ethylene-based homopolymers and copolymers having high molecular weights and broad molecular weight distributions.
Abstract: The present invention relates to a composite material including a porous titania thin film and a preparation method therefor. A composite material according to the present invention allows for a simple thin film formation process because of the use of cellulose crystals, makes it easy to control the structure of the titanium dioxide thin film provided therefor, has a large specific area, and is superior in terms of scratch resistance and photoactivity, thus finding useful applications in the various fields utilizing titanium dioxide as a photocatalyst.
Type:
Grant
Filed:
December 13, 2016
Date of Patent:
June 21, 2022
Assignee:
National Institute Of Forest Science
Inventors:
Sun Young Lee, Won Hee Lee, Yong Hee Yoon, Sang Jin Chun, Sang Bum Park, Don Ha Choi
Abstract: A method for forming and bonding a corrosion resistant perovskite layer on a surface of a steel component, for example, a stainless steel crucible is disclosed. The method comprises preparing an inhibitor mixture comprising about 0.5% to about 5% by weight of a rare-earth oxide and about 0.1% to about 1% by weight of an oxidizer; preparing a molten chloride salt mixture comprising a predetermined concentration of one of a binary eutectic mixture and a ternary eutectic mixture, mixing the inhibitor mixture to the molten chloride salt mixture to produce an inhibitor salt mixture; applying the inhibitor salt mixture to the surface of the steel component to be bonded with the perovskite layer; and heat treating the steel component with said applied inhibitor salt mixture to a predetermined temperature to form and bond the perovskite layer on said surface of said steel component.
Abstract: A method for preparing copper-nickel cobaltate nanowires includes steps of: (1) dissolving a soluble nickel salt, cobalt salt and copper salt in ultrapure water, and preparing same into a mixed salt solution A; (2) adding 1-4 mmol of sodium dodecyl sulfate to solution A, and dissolving same with stirring; (3) dissolving 12-30 mmol of hexamethylenetetramine in 20 mL of ultrapure water to form solution B; (4) slowly dropwise adding solution B to solution A via a separatory funnel to form solution C, and stirring same for 0.5-1 h; and (5) further transferring same into a 100 mL reaction vessel, reacting same at 100-160° C. for 8-20 h, suction filtration and washing, and drying same at 40-60° C. in a vacuum oven, and further reacting same at 350-800° C. for 1-4 h in a muffle furnace.
Abstract: Provided in this disclosure are oxidative dehydrogenation catalysts that include a mixed metal oxide having the empirical formula: Mo1.0V0.12-0.49Te0.05-0.17Nb0.10-0.20Od wherein d is a number to satisfy the valence of the oxide. The oxidative dehydrogenation catalyst is characterized by having XRD diffraction peaks (2? degrees) at 22±0.2, 27±0.2, 28.0±0.2, and 28.3±0.1. The disclosure also provides methods of making the catalysts that include wet ball milling.
Type:
Grant
Filed:
August 1, 2019
Date of Patent:
May 24, 2022
Assignee:
NOVA Chemicals (International) S.A.
Inventors:
Vasily Simanzhenkov, Xiaoliang Gao, Marie Barnes, David Sullivan, Yoonhee Kim, Perry de Wit
Abstract: A catalyst for dehydrogenation of hydrocarbons includes a support including zirconium oxide and alumina. A concentration of the zirconium oxide in the catalyst is in a range of from 1 weight percent (wt. %) to 20 wt. %. The catalyst includes from 0.01 wt. % to 2 wt. % of an alkali metal or alkaline earth metal. The catalyst includes from 1 wt. % to 2 wt. % of tin. The catalyst includes from 0.1 wt. % to 2 wt. % of a platinum group metal. The alkali metal or alkaline earth metal, tin, and platinum group metal are disposed on the support.
Type:
Grant
Filed:
September 10, 2019
Date of Patent:
May 24, 2022
Assignee:
Saudi Arabian Oil Company
Inventors:
Mohammed Abdulmajeed Al-Daous, Hussam A. Bahlouli