Patents Examined by Kaj K. Olsen
  • Patent number: 9108853
    Abstract: A process for preparing precipitated silica, in which a silicate is reacted with an acidifying agent in order to obtain a suspension of precipitated silica (S1), followed by: a separation step in order to obtain a cake, a cake-disintegration step in order to obtain a suspension of precipitated silica (S2), and a suspension drying step. According to the invention, a membrane concentration step is performed between the disintegration step and the drying step.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: August 18, 2015
    Assignee: RHODIA OPERATIONS
    Inventors: Sylvaine Neveu, Anne-Laure Pinault
  • Patent number: 9108276
    Abstract: The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 18, 2015
    Assignee: Consolidated Nuclear Security, LLC
    Inventor: Roland D. Seals
  • Patent number: 9108884
    Abstract: Methods for preparing metakaolin-enhanced industrial minerals. Mixing and heating kaolinite clay with an industrial mineral, such as activated carbon, that is between 750° F. and 1400° F. results in a metakaolin/activated carbon complex that provides good mercury sorbent qualities while producing a fly ash (after use as a sorbent in emissions applications) that has a lower foaming index.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: August 18, 2015
    Assignee: Pneumatic Processing Technologies, LLC
    Inventor: Michael A. Jones
  • Patent number: 9108291
    Abstract: The invention is a method of forming a layered-open-network polishing pad useful for polishing at least one of magnetic, semiconductor and optical substrates. Exposing a first and second polymer sheet or film of a photocurable polymer creates an exposure pattern in the first and second polymer sheet. The exposure pattern has elongated sections exposed to the energy source. The light exposure is of an exposure time sufficient to cure the photocurable polymer, but insufficient to cure adjacent elongated sections together. Attaching the first and second polymer sheets forms a polishing pad with the patterns of the first and second polymer sheets crossing. Curing the layered-open-network polishing pad to secure the layered-open-network polishing pad with the first and second sheets having sufficient stiffness to reduce sagging and maintain an orthogonal relationship between the elongated channels and the parallel planes of the polymer sheets.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 18, 2015
    Assignee: Dow Global Technologies LLC
    Inventor: Hamed Lakrout
  • Patent number: 9103001
    Abstract: An Ag—Au—Pd ternary alloy bonding wire for semiconductor devices made from 4-10 mass % of gold having a purity of 99.999% or higher, 2-5 mass % of palladium having a purity of 99.99% or higher, and remaining mass % of silver (Ag) having a purity of 99.999% or higher; and this wire contains 15-70 mass ppm of oxidizing non-noble metallic elements, and is thermally annealed before being continuously drawn through dies, and is thermally tempered after being continuously drawn through the dies, and this wire is useful for ball bonding in a nitrogen atmosphere; Ag2Al and a Pd rich layer produced in the interface between the Ag—Au—Pd ternary alloy wire and an aluminum pad suppress the corrosion development between the Ag2Al intermetallic compound layer and the wire.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: August 11, 2015
    Assignee: TANAKA DENSHI KOGYO K.K.
    Inventors: Jun Chiba, Satoshi Teshima, Tasuku Kobayashi, Yuki Antoku
  • Patent number: 9101665
    Abstract: Rapid setting high strength calcium phosphate cements and methods of using the same are provided. Aspects of the cements include fine and coarse calcium phosphate particulate reactants and a cyclodextrin which, upon combination with a setting fluid, produce a flowable composition that rapidly sets into a high strength product. The flowable compositions find use in a variety of different applications, including the repair of hard tissue defects, e.g., bone defects such as fractures.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: August 11, 2015
    Assignee: Skeletal Kinetics, LLC
    Inventors: Sahil Jalota, David C. Delaney, Duran N. Yetkinler
  • Patent number: 9103591
    Abstract: A method for producing cement clinker in a plant that includes: a first cyclone preheater and a second cyclone preheater for preheating first and second portions of a raw material, respectively; a precalcinator using a combustion gas for burning a fuel, the fumes released by the precalcinator being directed to the second cyclone preheater; a rotary furnace provided with a fuel burner, the fumes released by the rotary furnace being directed to the first cyclone preheater; and a clinker cooler that blows cooling air across the clinker at the outlet of the rotary furnace. According to the method, the precalcinator combustion gas contains between 90 and 100 vol % of oxygen. The precalcinator may consist of a fluidized bed, the fluidization gas being the combustion gas. The invention also relates to a plant as such.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: August 11, 2015
    Assignee: FIVES FCB
    Inventor: Sebastien Devroe
  • Patent number: 9102567
    Abstract: Engineered cements are described that include an engineered clinker fraction designed for use with one or more supplementary cementitious material (“SCM”) fractions. The engineered clinker fraction has a narrow particle size distribution (“PSD”) with a relatively high tricalcium silicate (“C3S”) content as compared to traditional ordinary Portland cement (“OPC”). The high C3S content and narrow PSD provide desired reactivity and set time when combined with the one or more SCMs. The clinker fraction may be combined with one or more ultrafine SCM fractions and/or one or more coarser SCM fractions to achieve a desired wide particle size distribution. By engineering the chemistry and the particle size of the clinker fraction and the SCM fraction to work together, the engineered cements can have superior packing density, water demand, reactivity, set time, sulfate resistance, and strength development as compared to conventional OPC-SCM blends.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: August 11, 2015
    Assignee: ROMAN CEMENT, LLC
    Inventors: Andrew S. Hansen, John M. Guynn
  • Patent number: 9102525
    Abstract: The invention provides a process for producing carbon nanotubes which includes supplying a continuous fluidized feed of a catalyst and at least one hydrocarbon to a reactor operating under conditions suitable to produce carbon nanotubes. The fluid is made to flow though the reactor with a swirling motion which ensures that the internal surfaces of the reactor are cleaned of deposits.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: August 11, 2015
    Assignee: University of the Witwatersrand
    Inventor: Sunny Esayegbemu Iyuke
  • Patent number: 9103173
    Abstract: Coated diamond particles have solid diamond cores and at least one graphene layer. Methods of forming coated diamond particles include coating diamond particles with a charged species and coating the diamond particles with a graphene layer. A composition includes a substance and a plurality of coated diamond particles dispersed within the substance. An intermediate structure includes a hard polycrystalline material comprising a first plurality of diamond particles and a second plurality of diamond particles. The first plurality of diamond particles and the second plurality of diamond particles are interspersed. A method of forming a polycrystalline compact includes catalyzing the fox of inter-granular bonds between adjacent particles of a plurality of diamond particles having at least one graphene layer.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: August 11, 2015
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Soma Chakraborty, Anthony A. DiGiovanni, Gaurav Agrawal, Danny E. Scott, Vipul Mathur
  • Patent number: 9101901
    Abstract: Method and apparatus for temperature controlled processes in a vessel to provide improved process control, in particular to enable controlled temperatures to be applied to a substance in different process zones of a vessel, has a series of tubular members arranged and operatively connected in a flow system, and each process zone has temperature regulating means juxtaposed thereto for effecting temperature control therein.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: August 11, 2015
    Assignee: NITECH SOLUTIONS LIMITED
    Inventors: Xiongwei Ni, Ian Laird, An-Ting Liao
  • Patent number: 9103172
    Abstract: Embodiments of the invention relate to thermally-stable polycrystalline diamond compacts (“PDCs”), and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate and a pre-sintered polycrystalline diamond (“PCD”) table bonded to the substrate. The pre-sintered PCD table includes bonded diamond grains defining a plurality of interstitial regions. The pre-sintered PCD table further including a first region remote from the substrate including a nonmetallic catalyst and a metallic catalyst each of which is disposed interstitially between the bonded diamond grains thereof, and a second region bonded to the substrate including a metallic-catalyst infiltrant disposed interstitially between the bonded diamond grains thereof. A nonplanar boundary is located between the first region and the second region.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: August 11, 2015
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Michael A. Vail
  • Patent number: 9096443
    Abstract: The present invention relates to a process for the polyol-type synthesis of nanoparticulate magnetite starting from mixtures of Fe0 and Fe1III in the presence of a mineral acid. The magnetite particles obtainable from the process have uniform size characteristics and have even presented higher SAR (Specific Absorption Rate) values than those of magnetosomes.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: August 4, 2015
    Assignee: Colorobbia Italia S.P.A.
    Inventors: Marco Bitossi, Giovanni Baldi, Franco Innocenti
  • Patent number: 9095899
    Abstract: A process for the preparation of particles with controlled dimensions comprising the steps of: (i) providing a laminar substrate having a patterned surface comprising a micro-relief repeat pattern comprising one or more discrete cells, each cell consisting of a floor portion and walls having a height (HW); (ii) depositing organic or inorganic material onto the patterned surface and into the cells to provide a thickness (T) of the deposited material wherein T?HW (iii) stripping the deposited organic or inorganic material from the surface of the substrate; and (iv) collecting the particles formed from said organic or inorganic material; and a composition obtainable from said process comprising a plurality of particles (P), wherein the number (n) of particles in said composition is at least 10, wherein said particles (P) are platelets exhibiting a planar geometry which is circular or which is made up of a number (x) of planar (y)-sided polygon(s), wherein x is from 1 to 20 and y is at least 3 wherein if x is gre
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 4, 2015
    Inventors: Andrew Henry Szuscik-Machnicki, Mark Edward Dawes
  • Patent number: 9089837
    Abstract: A novel method for making a CO2 capture agent is provided. The capture agent is made of a calcium/iron salt. The capture agent is prevented from degradation at high temperature. The capture agent is fit to be used at various temperatures in high CO2 densities for achieving high CO2 capture capacity, environmental protection and low power consumption.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: July 28, 2015
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL
    Inventors: Ching-Tsung Yu, San-Yuan Chen, Wei-Chin Chen, Po-Hsueh Chang
  • Patent number: 9093690
    Abstract: The invention relates to a sensor fuel cell that can be activated by a first substance (O2) in its environment. The sensor fuel cell includes a catalytically active anode, a cathode that has a cathode surface at least partially exposed to the environment, and a proton-conductive membrane located between the anode and the cathode so as to convey protons through from the anode to the cathode. An anode surface of the anode is at least partially exposed to the environment for access of at least one second substance (H2) from the environment to the anode. Such a disposition enables access of a first reactant in the form for example of oxygen from the ambient air to the cathode, and additionally access of a second reactant in the form for example of hydrogen from the ambient air to the free surface of the anode.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: July 28, 2015
    Assignee: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Claas Mueller, Mirko Frank
  • Patent number: 9085468
    Abstract: A niobium suboxide powder comprising niobium suboxide particles having a bulk nitrogen content of between 500 to 20,000 ppm. The nitrogen is distributed in the bulk of the powder particles. The nitrogen at least partly is present in the form of at least one of Nb2N crystals or niobium oxynitride crystals.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: July 21, 2015
    Assignee: H. C. STARCK GMBH
    Inventors: Christoph Schnitter, Holger Brumm, Christine Rawohl, Colin McCracken
  • Patent number: 9080228
    Abstract: An aspect of the copper alloy sheet contains 5.0 mass % to 12.0 mass % of Zn, 1.1 mass % to 2.5 mass % of Sn, 0.01 mass % to 0.09 mass % of P and 0.6 mass % to 1.5 mass % of Ni with a remainder of Cu and inevitable impurities, and satisfies a relationship of 20?[Zn]+7×[Sn]+15×[P]+4.5×[Ni]?32. The aspect of the copper alloy sheet is manufactured using a manufacturing process including a cold finishing rolling process in which a copper alloy material is cold-rolled, the average crystal grain diameter of the copper alloy material is 1.2 ?m to 5.0 ?m, round or oval precipitates are present in the copper alloy material, the average grain diameter of the precipitates is 4.0 nm to 25.0 nm or a proportion of precipitates having a grain diameter of 4.0 nm to 25.0 nm in the precipitates is 70% or more.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 14, 2015
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Keiichiro Oishi, Kouichi Suzaki
  • Patent number: 9080227
    Abstract: A copper alloy sheet according to one aspect contains 28.0 mass % to 35.0 mass % of Zn, 0.15 mass % to 0.75 mass % of Sn, 0.005 mass % to 0.05 mass % of P, and a balance consisting of Cu and unavoidable impurities, in which relationships of 44?[Zn]+20×[Sn]?37 and 32?[Zn]+9×([Sn]?0.25)1/2?37 are satisfied. The copper alloy sheet according to the aspect is manufactured by a manufacturing process including a finish cold-rolling process of cold-rolling a copper alloy material, an average grain size of the copper alloy material is 2.0 ?m to 7.0 ?m, and a sum of an area ratio of a ? phase and an area ratio of a ? phase in a metallographic structure of the copper alloy material is 0% to 0.9%.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: July 14, 2015
    Assignees: Mitsubishi Shindoh Co., Ltd., MITSUBISHI MATERIALS CORPORATION
    Inventors: Keiichiro Oishi, Takashi Hokazono, Michio Takasaki, Yosuke Nakasato
  • Patent number: 9080222
    Abstract: The invention relates to a method for producing hardened profiles, in particular hardened open profiles, wherein the component is at least partly heated to above the austenitizing temperature of the base material and after heating the component is cooled at a rate above the critical hardening rate, the energy necessary for the heating being introduced at least partly by induction, wherein free edges are provided in the component to adjust a temperature or hardness gradient over the cross section of the component, the size, type and extension of the edges being set for a desired degree of hardness and/or hardness gradient.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: July 14, 2015
    Assignee: VOESTALPINE KREMS GMBH
    Inventors: Gerhard Lengauer, Andreas Schieder, Alfred Habacht, Wolfgang Buhl, Franz Weitz, Andreas Kreuzhuber, Bernhard Lagler, Werner Brandstätter