Patents Examined by Kallambella Vijayakumar
  • Patent number: 8971977
    Abstract: A superconducting memory cell includes a magnetic Josephson junction (MJJ) with a ferromagnetic material, having at least two switchable states of magnetization. The binary state of the MJJ manifests itself as a pulse appearing, or not appearing, on the output. A superconducting memory includes an array of memory cells. Each memory cell includes a comparator with at least one MJJ. Selected X and Y-directional write lines in their combination are capable of switching the magnetization of the MJJ. A superconducting device includes a first and a second junction in a stacked configuration. The first junction has an insulating layer barrier, and the second junction has an insulating layer sandwiched in-between two ferromagnetic layers as barrier. An electrical signal inputted across the first junction is amplified across the second junction.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: March 3, 2015
    Assignee: Hypres, Inc.
    Inventors: Oleg A. Mukhanov, Alan M. Kadin, Ivan P. Nevirkovets, Igor V. Vernik
  • Patent number: 8968603
    Abstract: A dielectric material is provided. The material includes Ca1-x-yBaxSryTi1 -zCrzO3-?Ap, wherein A is nitrogen, fluorine, or combinations thereof; x and y can vary between the value of zero and one such that 0<x<1 and 0<y<1; z can vary between the value of zero and 0.01 such that 0?z?0.01; and ? and p can vary between the value of zero and one such that 0???1 and 0?p?1, with a proviso that z and p are not simultaneously zero. A dielectric component including the dielectric material and a system including the dielectric component are provided.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Lohit Matani
  • Patent number: 8968609
    Abstract: A contactless power transfer system is proposed. The power transfer system comprises a field-focusing element comprising a dielectric material. The dielectric material comprises a composition that is selected from the family of (Ba,Sr)TiO3 or CaCu3Ti4O12. The compositions of the (Ba,Sr)TiO3 include the materials such as Ca1-x-yBaxSryTi1-zCrzO3-?Np, wherein 0<x<1; 0<y<1; 0?z?0.01; 0???1; and 0?p?1. The compositions of the CaCu3Ti4O12 include the materials such as Ca1-x-yBaxSry (Ca1-zCuz)Cu2Ti4-?Al?O12-0.5?, wherein 0?x<0.5; 0?y<0.5; 0?z?1; and 0???0.1.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Jay Chakraborty, Lohit Matani, Adnan Kutubuddin Bohori, Suma Memana Narayana Bhat, Somakumar Ramachandrapanicker
  • Patent number: 8965468
    Abstract: A persistent-mode High Temperature Superconductor (HTS) shim coil is provided having at least one rectangular shaped thin sheet of HTS, wherein the thin sheet of HTS contains a first long portion, a second long portion parallel to first long portion, a first end, and a second end parallel to the first end. The rectangular shaped thin sheet of high-temperature superconductor has a hollow center and forms a continuous loop. In addition, the first end and the second end are folded toward each other forming two rings, and the thin sheet of high-temperature superconductor has a radial build that is less than 5 millimeters (mm) and able to withstand very strong magnetic field ranges of greater than approximately 12 Tesla (T) within a center-portion of a superconducting magnet of a superconducting magnet assembly.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: February 24, 2015
    Assignee: Massachusetts Institute of Technology
    Inventor: Yukikazu Iwasa
  • Patent number: 8965469
    Abstract: Disclosed are an oxide superconductor tape and a method of manufacturing the oxide superconductor tape capable of improving the length and characteristics of superconductor tape and obtaining stabilized characteristics across the entire length thereof. A Y-class superconductor tape (10), as an oxide superconductor tape, comprises a tape (13) further comprising a tape-shaped non-oriented metallic substrate (11), and a first buffer layer (sheet layer) (12) that is formed by IBAD upon the tape-shaped non-oriented metallic substrate (11); and a second buffer layer (gap layer) (14), further comprising a lateral face portion (14a) that is extended to the lateral faces of the first buffer layer (sheet layer) (12) upon the tape (13) by RTR RF-magnetron sputtering.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: February 24, 2015
    Assignee: SWCC Show Cable Systems Co., Ltd.
    Inventors: Tatsuhisa Nakanishi, Yuji Aoki, Tsutomu Koizumi, Atsushi Kaneko, Takayo Hasegawa
  • Patent number: 8961819
    Abstract: Disclosed herein provide compositions and hydrogen release methods for a high-capacity complex hydrogen storage material. The hydrogen storage material is mainly composed of metal borohydride and NH3. The invention advantageously adopt ammonia, one cheap and easily supplied material with high hydrogen content (17.6 wt %), as one of the hydrogen source, offering a safe and efficient way to store hydrogen and release hydrogen. Furthermore, the hydrogen storage material can be further catalyzed by a transition metal catalyst to improve the dehydrogenation kinetics. With the addition of catalyst, 0.2-10 equiv. H2 could be evolved at ?100˜600° C., which might be applied on vehicles which are fueled by hybrid or fuel cell.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: February 24, 2015
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Ping Chen, Xueli Zheng, Hailiang Chu, Zhitao Xiong, Guotao Wu
  • Patent number: 8956584
    Abstract: Production of polycrystalline silicon in substantially closed-loop processes and systems is disclosed. The processes and systems generally involve disproportionation of trichlorosilane to produce silane or dichlorosilane and thermal decomposition of silane or dichlorosilane to produce polycrystalline silicon.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: February 17, 2015
    Assignee: SunEdison, Inc.
    Inventors: Puneet Gupta, Yue Huang, Satish Bhusarapu
  • Patent number: 8951936
    Abstract: Provided is a method of manufacturing a superconducting accelerator cavity in which a plurality of half cells having opening portions (equator portions and iris portions) at both ends thereof in an axial direction are placed one after another in the axial direction, contact portions where the corresponding opening portions come into contact with each other are joined by welding, and thus, a superconducting accelerator cavity is manufactured, the half cells to be joined are arranged so that the axial direction thereof extends in a vertical direction; and concave portions that are concave towards an outer side are also formed at inner circumferential surfaces located below the contact portions of the half cells positioned at a bottom; and the contact portions are joined from outside by penetration welding.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: February 10, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsuya Sennyu, Hiroshi Hara, Takehisa Okuda
  • Patent number: 8954125
    Abstract: Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes forming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: February 10, 2015
    Assignees: International Business Machines Corporation, The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards
    Inventors: Antonio D. Corcoles Gonzalez, Jiansong Gao, Dustin A. Hite, George A. Keefe, David P. Pappas, Mary E. Rothwell, Matthias Steffen, Chang C. Tsuei, Michael R. Vissers, David S. Wisbey
  • Patent number: 8946126
    Abstract: A precursor material for the preparation of superconductors based on Bi2Sr2Ca1Cu2O8+? wherein the precursor material which is as close to equilibrium state as possible, i.e., has less than 5% in average 2201 intergrowths in the 2212 phase; in particular, the present invention relates to a precursor material, which is converted to the final conductor by partial melt processing, as well as to a process for the production of the precursor material and the use of the precursor material for preparing superconductors based on Bi2Sr2Ca1Cu2O8+?.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: February 3, 2015
    Assignee: Nexans
    Inventors: Joachim Bock, Jurgen Ehrenberg, Mark Rikel
  • Patent number: 8948829
    Abstract: An oxide superconducting bulk magnet member includes a plurality of bulk sections that have outer circumferences with outer circumferential dimensions different from each other and are disposed in a manner such that among the outer circumferences, an outer circumference in which the outer circumferential dimension is relatively large surrounds a small outer circumference; and interposed sections that are disposed between a pair of the bulk sections that are adjacent to each other, wherein a gap is formed between the bulk sections adjacent to each other, each of the bulk sections is an oxide bulk in which an RE2BaCuO5 phase is dispersed within an REBa2Cu3O7-x phase, and a bulk section having the smallest outer circumferential dimension among the bulk sections has a columnar shape or a ring shape, and bulk sections other than the bulk section having the smallest outer circumferential dimension have a ring shape.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: February 3, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Mitsuru Morita, Hidekazu Teshima
  • Patent number: 8948831
    Abstract: A transmission system is provided with a superconductive cable having three phase conductors and a cryostat, surrounding the phase conductors, and encasing a hollow space, for conducting a cooling agent. For the three phase conductors, a common neutral conductor is provided, being made of electrically normally conducting material, carried out as insulating round conductor and placed outside the cryostat and next to it. The cryostat is made of a circumferentially enclosed, thermally insulated sheath.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: February 3, 2015
    Assignee: Nexans
    Inventors: Mark Stemmle, Frank Schmidt, Rainer Soika, Beate West
  • Patent number: 8927461
    Abstract: Provided is a substrate for superconductive film formation, which includes a metal substrate, and an oxide layer formed directly on the metal substrate, containing chromium oxide as a major component and having a thickness of 10-300 nm and an arithmetic average roughness Ra of not more than 50 nm. A method of manufacturing a substrate for superconductive film formation, which includes forming an oxide layer directly on a metal substrate, the oxide layer containing chromium oxide as a major component and having a thickness of 10-300 nm and an arithmetic average roughness Ra of not more than 50 nm.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: January 6, 2015
    Assignees: International Superconductivity Technology Center, Furukawa Electric Co., Ltd., Japan Fine Ceramics Center
    Inventors: Seiki Miyata, Hiroyuki Fukushima, Reiji Kuriki, Akira Ibi, Masateru Yoshizumi, Akio Kinoshita, Yutaka Yamada, Yuh Shiohara, Ryuji Yoshida, Takeharu Kato, Tsukasa Hirayama
  • Patent number: 8921275
    Abstract: A tape-shaped base for a superconducting wire, which simplifies the intermediate layer and thus enables production of a superconducting wire at lower cost, and which is capable of improving the characteristics (such as electrical conduction and handling properties) of a superconducting wire; and a superconducting wire. Specifically disclosed is a tape-shaped base for a superconducting wire, which is obtained by forming an intermediate layer on a metal substrate. In the tape-shaped base for a superconducting wire a biaxially oriented layer of the intermediate layer is configured of a niobium monoxide (NbO) layer that is formed by depositing vapor deposition particles from a vapor deposition source on a film formation surface.
    Type: Grant
    Filed: September 6, 2010
    Date of Patent: December 30, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Hiroyuki Fukushima
  • Patent number: 8920678
    Abstract: A dispersion, and a film and optoelectronic devices formed from the dispersion are provided. The dispersion comprising conducting polymer containing particles having a particle size of less than 450 nm, wherein the conducting polymer comprises substituted or unsubstituted, uncharged or charged polymerized units of thieno[3,4-b]thiophene, and wherein a film drop cast from the dispersion has a conductivity from 10?1 to 10?6 S/cm measured using the four point probe method.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Xuezhong Jiang, Roy Daniel Bastian
  • Patent number: 8921276
    Abstract: The phase transition temperature, at which the crystal lattice of LMO that constitutes an oxide layer as an intermediate layer or as a part of an intermediate layer becomes cubic, is lowered. A substrate for a superconducting wire rod includes an oxide layer (LMO layer (22)) which contains, as a principal material, a crystalline material represented by the compositional formula: Laz(Mn1?xMx)wO3+? (wherein M represents at least one of Cr, Al, Co or Ti, ? represents an oxygen non-stoichiometric amount, 0<w/z<2, and 0<x?1).
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 30, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Masayasu Kasahara, Hiroyuki Fukushima, Yoshikazu Okuno, Yuko Hayase
  • Patent number: 8918152
    Abstract: Disclosed are devices comprising multiple nanogaps having a separation of less than about 5 nm. Also disclosed are methods for fabricating these devices.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: December 23, 2014
    Assignee: The Trustees Of The University Of Pennsylvania
    Inventors: Douglas R. Strachan, Danvers E. Johnston, Beth S. Guiton, Peter K. Davies, Dawn A. Bonnell, Alan T. Johnson, Jr.
  • Patent number: 8912126
    Abstract: A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: December 16, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Toyo Kohan Co., Ltd.
    Inventors: Takashi Yamaguchi, Masaya Konishi, Hajime Ota
  • Patent number: 8911700
    Abstract: A process and an installation for reducing particulate material containing iron oxide are shown, wherein the material containing iron oxide is at least partially reduced with reducing gas in a reducing zone and the waste gas produced during the reduction is drawn off and subsequently subjected to CO2 cleaning in a CO2 separating device (1), in which a tail gas containing CO2 is separated. The tail gas is subjected to combustion and subsequent dewatering in a dewatering device (5), the substitute gas thereby formed being used as a substitute for inert gas.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: December 16, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Robert Millner, Jan-Friedemann Plaul, Kurt Wieder
  • Patent number: 8903465
    Abstract: A superconducting magnet assembly includes a bobbin comprising a central bore along a longitudinal direction, and a superconducting coil package wound on the bobbin. The superconducting coil package includes a plurality of superconducting coil layers wound on the bobbin, a plurality of supporting member layers, each of the supporting member layers being between a corresponding two adjacent superconducting coil layers, and a thermal conduction layer between two superconducting coil layers or between a superconducting coil layer and an adjacent supporting member layer.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 2, 2014
    Assignee: General Electric Company
    Inventors: Xianrui Huang, Yan Zhao, Anbo Wu, Evangelos Trifon Laskaris, Paul St. Mark Shadforth Thompson