Patents Examined by Kara E. Geisel
  • Patent number: 10394119
    Abstract: A system for the fabrication of patterned miniature structures, such integrated circuits, includes a continuous, flexible substrate that is transported by rollers to a series of processing stations. To ensure proper alignment amongst the various stations, the substrate is provided with at least one fiducial that is raised above its top surface a height that maximizes optical contrast when viewed interferometrically. At least one processing station includes an optical device that is capable of both interferometrically identifying the fiducial for alignment purposes and subsequently illuminating the substrate with a modifiable light pattern as part of a photolithographic process. Fiducials can also be used to identify gross geometric variances in the substrate caused by external factors, such as heat and moisture. In turn, a web adjustment element can be used to apply selective heat or tension to the substrate in order to correct such geometric variances.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: August 27, 2019
    Assignee: CARPE DIEM TECHNOLOGIES, INC.
    Inventor: John S. Berg
  • Patent number: 10393885
    Abstract: Resonant meta-material structures are defined by metallic, dielectric or other materials that form nanoshells or nanomeshes that can be situated proximate to ionizing-radiation-sensitive layers so as to provide ionizing-radiation-dose-dependent optical properties. Such meta-material structures can also define aligned or periodic, semi-random, or other arrangements of nanostructures that are coupled to or include stressed layers. Detection of optical radiation from such structures is used to determine gamma radiation dose or to detect a disturbance of the nanostructure indicating tampering.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: August 27, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Kyle J. Alvine, Bruce E. Bernacki
  • Patent number: 10395078
    Abstract: A method for detecting package tampering, comprising performing scanning of a container comprising a packaged item and a plurality of packaging elements surrounding the packaged item, wherein each of the plurality of packaging elements comprises a sensing component comprising a stress sensor, determining a stress on each of the plurality of packaging elements surrounding the packaged item from the scanning, and generating an output indicating the stress on each of the plurality of packaging elements surrounding the packaged item.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ermyas Abebe, Brendan Haesler, Dileban Karunamoorthy, Lenin Mehedy
  • Patent number: 10386172
    Abstract: A system and method for surface inspection of an object using optical coherence tomography (OCT) with anticipatory depth of field adjustment is provided. The method includes determining a present working distance and one or more forward working distances; determining a present depth of field in which the surface of the object is in focus at the location of the present working distance and at as many of the consecutive forward surface locations as determined possible; changing to the present depth of field; performing an A-scan of the object; moving the object such that the scanner head is directed at each of the consecutive forward surface locations determined to be in the present depth of field; and performing an A-scan at each of the consecutive forward surface locations determined to be in the present depth of field.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: August 20, 2019
    Assignee: SIGHTLINE INNOVATION INC.
    Inventors: Wallace Trenholm, Lorenzo Pons
  • Patent number: 10386236
    Abstract: Reflected light detecting device and method with surface reflected light components collectively be extracted/removed when detecting reflected light arising in casting light onto target-object range having non-planar surface.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: August 20, 2019
    Assignee: NATIONAL UNIVERSITY CORPORATION KAGAWA UNIVERSITY
    Inventors: Hiroki Hayashi, Ichiro Ishimaru
  • Patent number: 10388320
    Abstract: Provided herein are apparatus and methods for inspecting articles for features using interference in light reflected from the articles. The interference may be used to detect, distinguish, and/or map features of articles, which features may include, but are not limited to, surface defects. In at least one embodiment, an apparatus and method includes conveying parallel light along a primary axis through a telecentric lens and a light-splitting device, respectively; illuminating a majority of a surface of an article with the parallel light; conveying reflected light from the surface of the article along the primary axis back through the light-splitting device and the telecentric lens, respectively; and recording interference resulting from a combination of light comprising at least the reflected light from the surface of the article.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: August 20, 2019
    Assignee: Seagate Technology LLC
    Inventors: Joachim Ahner, David Tung
  • Patent number: 10378964
    Abstract: In a waveform measurement method, first, initial pulsed light is spatially dispersed for respective wavelengths. Next, the initial pulsed light is input to a polarization dependent type SLM in a state where a polarization plane is inclined with respect to a modulation axis direction, and a phase spectrum of a first polarization component of the initial pulsed light along the modulation axis direction is modulated, to cause a time difference between first pulsed light Lp1 including the first polarization component and second pulsed light Lp2 including a second polarization component orthogonal to the first polarization component. After combining the wavelength components, an object is irradiated with the pulsed light Lp1 and the pulsed light Lp2, and light generated in the object is detected. The above detection operation is performed while changing the time difference, and a temporal waveform of the pulsed light Lp1 is obtained.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: August 13, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Koji Takahashi, Haruyasu Ito, Koyo Watanabe
  • Patent number: 10352692
    Abstract: Object: An object is to quantify the roughness of a test surface by scattering and diffraction of illumination light and to evaluate the matching degree of surface roughness separately from color based on a difference in roughness. Solution to Problem A surface roughness determination apparatus 1 using a white light source includes an arithmetic processing unit 3 configured to convert 3-band visual sensitivity images S1i, S2i and S3i, which respectively have three spectral sensitivities (S1(?), S2(?) and S3(?)) subjected to linear transformation so as to be equivalent to a CIE XYZ color matching function and are obtained from a surface 5 by a two-dimensional colorimeter 2 using the three spectral sensitivities (S1(?), S2(?) and S3(?)), into tristimulus values X, Y and Z in a CIE XYZ color system and perform arithmetic operations.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: July 16, 2019
    Assignee: PAPALAB CO., LTD.
    Inventor: Makoto Kato
  • Patent number: 10337916
    Abstract: A method is provided to obtain a full range intrinsic spectral signature for spectroscopy and spectral imaging. The method eliminates the irrelevant spectral components and is used to normalize the spectral intensities across the full wavelength ranges obtained from different instrumentation. The method determines the intrinsic instrument noise levels and the noise level across the spectral range is averaged for each spectrum. By determining the percent of the integrated instrument noise relative to the integrated illumination energy for each instrument, the instrument noise can be normalized to one common value and the intensity values of the intrinsic sample spectra can be normalized proportionately and combined into a continuous intrinsic spectrum across the wavelength ranges of the contributing instruments. The methodology is also implemented in spectral imaging and spectral data cubes.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: July 2, 2019
    Assignee: Center for Quantitative Cytometry
    Inventors: Abraham Schwartz, Adolfas K. Gaigalas, Peter Ingram
  • Patent number: 10330463
    Abstract: Embodiments of a shearography system may include light sources configured to produce beams of light to illuminate a test area. Each of the beams of light may include a different wavelength. A camera may be configured to obtain intensity information corresponding to reflections of the lights off of the test area. An optical shearing device may be disposed in an optical path between the light sources and the camera and the optical shearing device may be configured to provide a shearing angle.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: June 25, 2019
    Assignee: Oakland University
    Inventors: Lianxiang Yang, Xin Xie, Nan Xu, Xu Chen
  • Patent number: 10323963
    Abstract: A flexible optical measuring device comprises an optical distance measuring module, an optical fiber adapter and an optical coupling module. The optical distance measuring module comprises a light source, an optical receiver and a computing unit. The optical fiber adapter is disposed and connected between the optical distance measuring module and the optical coupling module. The optical coupling module comprises a first optical fiber, a two-in-one optical coupler, a detector and a second optical fiber. A measuring beam is emitted from the light source and reaches the detector. The measuring beam then passes through the detector to the object and forms a reflected beam which is reflected back to the detector, then enters the second optical fiber and passes through the optical receiver and the optical receiver outputs a measurement signal. The computing unit calculates the distance between the object and a terminal of the detector accordingly.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 18, 2019
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Tai-Shan Liao, Chi-Hung Huang, Chun-Li Chang, Shih-Jie Chou
  • Patent number: 10324077
    Abstract: Systems, apparatuses, and computer-implemented methods are provided for the real-time quantification of crude oil in an effluent from coreflooding apparatus. Disclosed here is a method of determining the amount of crude oil in an effluent from a coreflooding apparatus by blending the effluent stream with a solvent stream in a mixing device to produce a mixed stream, supplying the mixed stream to an in-line phase separator to produce a first stream containing the solvent and the crude oil from the effluent stream and a second stream containing water and water-miscible components from the effluent stream; and passing the first stream to a continuous flow analyzer to determine the amount of crude oil in the effluent stream.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: June 18, 2019
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Dmitry Kosynkin, Mohammed Alaskar
  • Patent number: 10317337
    Abstract: A method for designing an integrated computational element (ICE) includes generating an array of discrete data points and plotting the discrete data points across a predetermined wavelength region. A line shape is then generated that connects to and is constrained by the array of discrete data points, and thereby generates a first transmission function. The discrete data points are then iteratively modified based on one or more performance criteria to generate a second transmission function. A model transmission function corresponding to a model ICE design is then fitted to the second transmission function to identifying a predictive ICE design configured to detect a desired characteristic of interest.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: June 11, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: James M. Price, Aditya B. Nayak, Bin Dai
  • Patent number: 10309954
    Abstract: Provided herein is an assay apparatus comprising at least one assay module; and a portable frame adapted to releasably retain the at least one assay module. The at least one assay module is adapted to perform at least one assay. The assay module comprises a sample receiver and an assay device operatively associated with the sample receiver. In some embodiments, the assay apparatus further comprises at least one functional module releasably retained by the portable frame. The functional module is operatively associated with the assay module when retained by the portable frame.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: June 4, 2019
    Assignee: GREEN DOMAIN DESIGN LLC
    Inventors: Lonnie W. Adelman, Nitin C. Bhagwath
  • Patent number: 10302571
    Abstract: A system can include an exchangeable mounting structure having a visual marking or coloring and at least one physically associated sample introduction system component having an indicating mark or color matching the visual marking or coloring of the exchangeable mounting structure. The visual marking or colored corresponds to a sample analysis configuration for analyzing a particular sample type at an analytical instrument.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: May 28, 2019
    Assignee: ELEMENTAL SCIENTIFIC, INC.
    Inventor: Daniel R. Wiederin
  • Patent number: 10295470
    Abstract: To provide a microspectroscope that can perform a wide range mapping measurement with high sensitivity, at high speed, and with high wavelength resolution. The Raman spectroscope comprises: a unit for linearly irradiating excitation light; a movable stage for a sample; an objective lens for focusing Raman light from the linear irradiation region; an incident slit provided at the imaging position of Raman light; a spectrometer for diffusing the passing light; a CCD detector for detecting Raman spectral image; and a control device for controlling the mapping measurement by synchronizing the movable stage and the CCD detector. The control device controls the movable stage to move in the direction orthogonal to the longitudinal direction of the linear irradiation light and obtain one average spectrum.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: May 21, 2019
    Assignee: JASCO Corporation
    Inventors: Kento Aizawa, Tsutomu Inoue, Masateru Usuki
  • Patent number: 10288481
    Abstract: The present disclosure concerns a spectrometer (10) and method for generating a two dimensional spectrum (S). The spectrometer (10) comprises a main grating (3) and cross dispersion element (2). An imaging mirror (4) is arranged for reflecting and focussing dispersed radiation (R3) from the main grating (3) towards an image plane (IP) for imaging the two dimensional spectrum (S) onto an image plane (IP) of the spectrometer (10). A correction lens (6) is arranged for correcting optical aberrations in the imaging of the two dimensional spectrum (S) in the image plane (IP). The imaging mirror (4) and correction lens (6) have a coinciding axis of cylindrical symmetry (AS).
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 14, 2019
    Assignee: Nederlandse Organisatie voor toegepast—natuurwetenschappelijk onderzoek TNO
    Inventors: James Peter Robert Day, Kees Moddemeijer, Daniel Perez Calero, Tom Duivenvoorde, Marijn Sandtke
  • Patent number: 10281256
    Abstract: An agile optical imaging system for optical coherence tomography imaging using a tunable source comprising a wavelength tunable VCL laser is disclosed. The tunable source has long coherence length and is capable of high sweep repetition rate, as well as changing the sweep trajectory, sweep speed, sweep repetition rate, sweep linearity, and emission wavelength range on the fly to support multiple modes of OCT imaging. The imaging system also offers new enhanced dynamic range imaging capability for accommodating bright reflections. Multiscale imaging capability allows measurement over orders of magnitude dimensional scales. The imaging system and methods for generating the waveforms to drive the tunable laser in flexible and agile modes of operation are also described.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: May 7, 2019
    Assignees: THORLABS, INC., PRAEVIUM RESEARCH, INC.
    Inventors: Alex Ezra Cable, Vijaysekhar Jayaraman, James Jiang, Benjamin Potsaid
  • Patent number: 10267740
    Abstract: A method of detecting a tracer compound dissolved in a liquid composition via surface-enhanced spectroscopy includes the steps of: a. optionally, diluting the liquid composition or the separated liquid by mixing with a diluent liquid; b. bringing a sample of the separated liquid into contact with, a spectroscopy-enhancing surface including gold, silver or copper; c. obtaining a Raman spectrum from the sample; and d. calculating, from the spectrum, the concentration of the tracer in the sample relative to the concentration of a second component of the composition.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: April 23, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Vincent Brian Croud, Elizabeth Ruth Egginton, Clive Anthony Marchant, Duncan William John McCallien, Alistair McInroy, David Eustace, Graeme McNay
  • Patent number: 10267738
    Abstract: A method for assigning chirality of carbon nanotube is provided. Firstly, carbon nanotube sample, an optical microscope with a liquid immersion objective and a liquid are provided. Secondly, the carbon nanotube sample is immersed in the liquid. Thirdly, the carbon nanotube sample is illuminated by an incident beam to generate resonance Rayleigh scattering. Fourthly, the liquid immersion objective is immersed into the liquid to get a resonance Rayleigh scattering (RRS) image of the carbon nanotube sample. Fifthly, spectra of the carbon nanotube sample are measured to obtain chirality of the carbon nanotube sample.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: April 23, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Wen-Yun Wu, Jing-Ying Yue, Xiao-Yang Lin, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan