Patents Examined by Kara E. Geisel
  • Patent number: 10267682
    Abstract: A method for imaging one dimension nanomaterials is provided. Firstly, one dimension nanomaterials sample, an optical microscope with a liquid immersion objective and a liquid are provided. Secondly, the one dimensional nanomaterials sample is immersed in the liquid. Thirdly, the one dimensional nanomaterials sample is illuminated by an incident beam to generate resonance Rayleigh scattering. Fourthly, the liquid immersion objective is immersed into the liquid to get a resonance Rayleigh scattering (RRS) image of the one dimensional nanomaterials sample. Fifthly, spectra of the one dimensional nanomaterials sample are measured to obtain chirality of the one dimensional nanomaterials sample.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: April 23, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Wen-Yun Wu, Jing-Ying Yue, Xiao-Yang Lin, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10261181
    Abstract: A laser radar system capable of active polarization comprises a signal processing unit for sending a control signal; a laser emitting unit for emitting a first laser to a target after receiving the control signal, wherein the laser emitting unit comprises a liquid crystal polarization driver and a liquid crystal polarization component group, and the liquid crystal polarization driver controls a phase delay of the liquid crystal polarization component group to therefore change a polarized state of the first laser; and a laser receiving unit for receiving a second laser reflected off the target and analyzing polarization information of the second laser through the signal processing unit to evaluate surface characteristics of the target.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: April 16, 2019
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Te-Yuan Chung, Ruoh-Rou Chang, Shih-Che Chien, Yu-Sung Hsiao
  • Patent number: 10260942
    Abstract: Methods and systems for spectrometer dark correction are described which achieve more stable baselines, especially towards the edges where intensity correction magnifies any non-zero results of dark subtraction, and changes in dark current due to changes in temperature of the camera window frame are typically more pronounced. The resulting induced curvature of the baseline makes quantitation difficult in these regions. Use of the invention may provide metrics for the identification of system failure states such as loss of camera vacuum seal, drift in the temperature stabilization, and light leaks. In system aspects of the invention, a processor receives signals from a light detector in the spectrometer and executes software programs to calculate spectral responses, sum or average results, and perform other operations necessary to carry out the disclosed methods. In most preferred embodiments, the light signals received from a sample are used for Raman analysis.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: April 16, 2019
    Assignee: Kaiser Optical Systems Inc.
    Inventors: Patrick Wiegand, James M. Tedesco, Joseph B. Slater, Francis Esmonde-White
  • Patent number: 10254198
    Abstract: Certain aspects of the present disclosure generally relate to an optical reference element having a wavelength spectrum comprising a plurality of wavelength functions having wavelength peaks spaced over a range of wavelengths, wherein adjacent wavelength functions are due to two orthogonal birefringence axes in the optical reference element. Aspects of the present disclosure may eliminate the drift issues associated with residual polarization and polarization dependent loss (PDL) with respect to grating-based sensor and reference element measurements.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: April 9, 2019
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventor: Domino Taverner
  • Patent number: 10060796
    Abstract: A method for correcting frequency offset in a dual comb spectroscopy system is provided. The method includes causing a first laser (L1) generator to transmit L1 pulses at a repetition rate of a first frequency and causing a second laser (L2) generator to transmit L2 pulses at a repetition rate of a second frequency. The method also includes interrogating a reference material using a combination of the L1 pulses and the L2 pulses and capturing reference cell pulses. The method further includes interrogating a material of interest using the L1 pulses and capturing material of interest pulses. The method includes determining a frequency jitter based on the captured reference cell pulses and the combination of the captured material of interest pulses and the L2 pulses.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: August 28, 2018
    Assignee: MORPHO DETECTION, LLC
    Inventors: Anish Bekal, Sameer Dinkar Vartak, Rachit Sharma
  • Patent number: 10053269
    Abstract: A fuel sensing system utilizes a fiber optic sensor comprising a membrane made of a direct band gap semiconductor material (such as gallium arsenide) that forms an optical cavity with an optical fiber inside a hermetically sealed sensor package located at the bottom of a fuel tank. The optical fiber inside the fuel tank is not exposed to the fuel. The optical cavity formed by the bottom surface of the membrane and the surface of the distal end of the internal optical fiber is capable of behaving as a Fabry-Pérot interferometer. Multiple light sources operating at different wavelengths and multiple spectrometers can be coupled to the confronting surface of the membrane via the optical fiber inside the fuel tank, a hermetically sealed fiber optic connector that passes through the wall of the fuel tank, and a fiber optic coupler located outside the fuel tank.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: August 21, 2018
    Assignee: The Boeing Company
    Inventor: Eric Yuen-Jun Chan
  • Patent number: 10054428
    Abstract: An inner surface shape measurement device for measuring a shape of an inner surface of a test target, and includes a light source, an optical system which converts light emitted by the light source into a disc-shaped light beam to cause the light beam to be emitted toward an inner surface of the test target, a photography unit which captures an image of a state in which the light beam is projected on the inner surface of the test target, and a wiring which supplies power for driving the light source. The optical system, the light source and the photography unit are disposed in this order along a same axis line, and the wiring extends from the light source toward the photography unit.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: August 21, 2018
    Assignee: OLYMPUS CORPORATION
    Inventor: Masayoshi Yokota
  • Patent number: 10048128
    Abstract: Methods and systems for spectrometer dark correction are described which achieve more stable baselines, especially towards the edges where intensity correction magnifies any non-zero results of dark subtraction, and changes in dark current due to changes in temperature of the camera window frame are typically more pronounced. The resulting induced curvature of the baseline makes quantitation difficult in these regions. Use of the invention may provide metrics for the identification of system failure states such as loss of camera vacuum seal, drift in the temperature stabilization, and light leaks. In system aspects of the invention, a processor receives signals from a light detector in the spectrometer and executes software programs to calculate spectral responses, sum or average results, and perform other operations necessary to carry out the disclosed methods. In most preferred embodiments, the light signals received from a sample are used for Raman analysis.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: August 14, 2018
    Assignee: KAISER OPTICAL SYSTEMS INC.
    Inventors: Patrick Wiegand, James M. Tedesco, Joseph B. Slater, Francis Esmonde-White, Darren Schipper
  • Patent number: 10048358
    Abstract: A LIDAR system emits laser pulses, wherein each pulse is associated with a power level. A laser emitter is adjusted during operation of a LIDAR system using power profile data associated with the laser. The power profile data is obtained during a calibration procedure and includes information that associates charge duration for a laser power supply with the actual power output by laser. The power profiles can be used during operation of the LIDAR system. A laser pulse can be emitted, the reflected light from the pulse received and analyzed, and the power of the next pulse can be adjusted based on a lookup within the power profile for the laser. For instance, if the power returned from a pulse is too high (e.g., above some specified threshold), the power of the next pulse is reduced to a specific value based on the power profile.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: August 14, 2018
    Assignee: Panosense Inc.
    Inventors: Adam Berger, Denis Nikitin, Riley Andrews, Ryan McMichael, Brian Pilnick
  • Patent number: 10041794
    Abstract: A site positioning system for an underground machine includes a first prism coupled with the underground machine, a second prism operatively coupled with the underground machine, a primary total station, and a reference prism may be in communication with the primary total station. A positioning controller is configured to control, responsive to receiving a High Accuracy Machine Position mode, the primary total station to monitor the first prism and the second prism and transmit a first prism position and a second prism position, respectively, to the positioning controller; control, responsive to receiving a Low Accuracy Machine Position mode, the primary total station to monitor the first prism and transmit the first prism position to the positioning controller; determine, responsive to receiving a Reference Prism Measurement mode, whether a reference prism measurement has been completed, and present positioning information for the machine based on one or more of the prism positions.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 7, 2018
    Assignee: Caterpillar Global Mining Europe GmbH
    Inventors: Carl Moberg, Thomas Temmann, Martin Teiner, Paul Kornev, Frank Kühnemund, Brian Rockwood, Matt Palmer, Brent Duppong, Björn-Andre Hühn
  • Patent number: 10041914
    Abstract: A degassing device 2 includes: a built-in absorbance measurement section 28 using an LED light source and measuring the intensity of light transmitted through a mobile phase passing through a flow cell; and a solenoid valve 26 switchable between two states with and without the mobile phase passed through a degassing tube 21. The passage-switching operation by the solenoid valve is performed so as to obtain detection signals of the transmitted light in the absorbance measurement section when the mobile phase drawn from a mobile phase container by a liquid-feeding pump 40 is passed through the degassing tube for degassing as well as when the mobile phase is not passed through the degassing tube for degassing. A signal processor 29 calculates the difference in absorbance based on those detection signals, estimates the degree of degassing based on that difference, and displays the result on a display unit 32.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: August 7, 2018
    Assignee: SHIMADZU CORPORATION
    Inventors: Kumiko Jingu, Keisuke Ogawa, Masato Watanabe, Yusuke Nagai, Masanori Fujiwara, Tomoyuki Yamazaki
  • Patent number: 10018508
    Abstract: A spectrometer for examining the spectrum of an optical emission source may include: an optical base body, a light entry aperture connected to the optical base body to couple light into the spectrometer, at least one dispersion element to receive the light as a beam of rays and generate a spectrum, and at least one detector for measuring the generated spectrum. A light path may run from the light entry aperture to the detector. A mirror group with at least two mirrors may be provided in a section of the light path between the light entry aperture and the at least one detector, in which the beam does not run parallel, which may compensate for temperature effects. In the mirror group, at least one mirror or the entire mirror group may be moveable relative to the optical base body and may be coupled to a temperature-controlled drive.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: July 10, 2018
    Assignee: Spectro Analytical Instruments GmbH
    Inventors: Wolfram Bohle, Alexander Morlang
  • Patent number: 10018460
    Abstract: A device for the interferometric measuring of an object, including a light source to generate an emitted beam, a beam splitting device for splitting the emitted beam into a measuring beam and at least first and second reference beams, an optic interference device, and first and second detectors, with the interference device and the first detector being embodied cooperating such that the measuring beam, at least partially reflected by the object, and the first reference beam are interfered on at least one detector area of the first detector. The interference device and the second detector are embodied cooperating such that the measuring beam, at least partially scattered by the object, and the second reference beam are interfered on at least one detector area of the second detector. A method is also provided for the interferometric measuring of an object.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 10, 2018
    Assignee: Polytec GmbH
    Inventors: Matthias Schussler, Christian Rembe, Alexander Drabenstedt, Robert Kowarsch, Wanja Ochs
  • Patent number: 10012538
    Abstract: A spectrometer includes a light detection element having a substrate made of a semiconductor material, a light passing part provided in the substrate, and a light detection part put in the substrate, a support having a base wall part opposing the light detection element, and side wall parts integrally formed with the base wall part, the light detection element being fixed to the side wall parts, the support being provided with a wiring electrically connected to the light detection part, and a dispersive part provided on a surface of the base wall part on a side of a space. An end part of the wiring is connected to a terminal of the light detection element. An end part of the wiring is positioned on a surface in the base wall part on an opposite side from the side of the space.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: July 3, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takafumi Yokino, Katsumi Shibayama
  • Patent number: 10012583
    Abstract: A reflection property measuring device comprising illumination light and reflected light polarizing plates held by a holder in a mutually superposed state in a thickness direction thereof, wherein the holder has a fittingly-holding portion for setting a held posture, and each of the polarizing plates has a fitting portion fittable to the fittingly-holding portion. The fitting portions of the polarizing plates are provided at positions allowing the polarizing plates to be held by the holder in respective postures where polarizing directions thereof intersect orthogonally. A manufacturing method is disclosed for polarizing plates used in the device, wherein the illumination light and reflected light polarizing plates are manufactured in such a manner as to be punched out from the same polarizing plate material.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: July 3, 2018
    Assignee: Konica Minolta, Inc.
    Inventors: Yoshiyuki Nagashima, Katsutoshi Tsurutani
  • Patent number: 10012536
    Abstract: An optical system design using Morse Taper mounted optical components for improving alignment performance, and more specifically a spectrometer design wherein the components include Morse Taper male tapers and the spectrometer bench include Morse Taper female openings that eases alignment and improves alignment stability, both physical and temperature related, of optical components while simplifying manufacture and maintaining a compact footprint is disclosed.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: July 3, 2018
    Assignee: Ocean Optics, Inc.
    Inventors: Kenneth D. White, Warren H. Miller, Reeder N. Ward
  • Patent number: 10012628
    Abstract: A multifunctional particle analysis device includes a particle measuring device and a particle composition analysis device. Calibration particles for which at least the number, size, and composition thereof are known are input to the particle measuring device and the particle composition analysis device and analyzed. The sensitivity of the particle measuring device is calibrated in accordance with the number and size of the calibration particles as measured by the particle measuring device, and the sensitivity of the particle composition analysis device is calibrated in accordance with the mass composition of the calibration particles as measured by the particle composition analysis device. Moreover, the irradiation axis of particles that enter the particle composition analysis device relative to a capturing unit is calibrated in accordance with a state in which the calibration particles are captured on the capturing unit of the particle composition analysis device.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: July 3, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yoshiki Hasegawa, Kazuhiro Koizumi, Takamasa Asano, Naoki Takeda
  • Patent number: 9995633
    Abstract: An optical wavelength detecting device, the device including: a polarizer configured to transform an incident light into a polarized light; a detecting element configured to receive the polarized light and form a temperature difference or a potential difference between two points of the detecting element, wherein the detecting element includes a carbon nanotube structure including a plurality of carbon nanotubes oriented along the same direction, and angles between a polarizing direction of the polarized light and an oriented direction of the plurality of carbon nanotubes is adjustable; a measuring device electrically connected to the detecting element and configured to measure the temperature difference or the potential difference; a data processor electrically connected to the measuring device and configured to obtain the optical wavelength by calculating and analyzing the temperature difference or the potential difference.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: June 12, 2018
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ling Zhang, Yang Wu, Kai-Li Jiang, Chang-Hong Liu, Jia-Ping Wang, Shou-Shan Fan
  • Patent number: 9989459
    Abstract: The invention provides differential refractive index detectors and methods for the use of differential refractive index detectors. In an exemplary embodiment, a differential refractive index detector includes a flow cell body having a proximal end, a distal end, and a flow axis extending between the proximal and the distal end. The flow cell body includes a first chamber and a second chamber and the fluid conduits coupled to the flow cell body can be tapered to reduce dispersion.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: June 5, 2018
    Assignee: WATERS TECHNOLOGIES CORPORATION
    Inventors: Anthony C. Jeannotte, Mark Basile, Senthil Bala, Colin Fredette
  • Patent number: 9988242
    Abstract: A method of monitoring component health is provided. The method includes moving a health monitor over a scattering surface of the component, emitting light of various wavelengths toward the scattering surface from a light source of the health monitor, observing one or more responses of the scattering surface to the light of the various wavelengths at a detector of the health monitor and identifying a condition of the scattering surface from the observed one or more responses of the scattering surface to the light of the various wavelengths.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: June 5, 2018
    Assignee: OTIS ELEVATOR COMPANY
    Inventors: David L. Lincoln, Michael J. Birnkrant, Wayde R. Schmidt