Patents Examined by Karl Easthom
  • Patent number: 5907273
    Abstract: Use is made of thermoplastic materials in layered configurations as a thermally stable, rigid but not brittle strip of lengths of six inches to ten feet or more. The layered strip contains layers of conductive fibers in a resin matrix, which, through use of appropriate contact mechanisms and wiring, provide an assembly with an infinite potentiometer scale. The strips are especially useful in linear positioning indicators such as pneumatic and hydraulic cylinder and liquid level gauges. The strips are conductively connected by cutting a bias surface relative to said strips and placing resin thereon.
    Type: Grant
    Filed: September 24, 1997
    Date of Patent: May 25, 1999
    Assignee: Rochester Gauges, Inc.
    Inventors: Herbert G. Ross, Jr., Carl A. Taylor, Cecil M. Williamson
  • Patent number: 5907271
    Abstract: A positive characteristic thermistor device includes a device main body made of a semiconductor ceramic material which reliably and cleanly delaminates upon the application of excessive voltage thereto. The main body has outer layers having lower porosity formed on both sides of an inner layer having higher porosity. The inner layer having higher porosity can be obtained by burning a ceramic material for positive characteristic thermistors including resin beads mixed therein. After forming the main body, an electrode is formed on the outer surface of each of the outer layers. When an overvoltage is applied to this positive characteristic thermistor device, delamination occurs in the inner layer having higher porosity to create an open-circuit in a circuit in which the thermistor device is connected.
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: May 25, 1999
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Atsushi Hirano, Shigeyuki Kuroda, Kenji Tanaka
  • Patent number: 5907272
    Abstract: Circuit protection device having a PTC element in series with a fusible element. The device includes a PTC element having first and second electrodes in electrical contact with the PTC element. An insulating layer is disposed on the first and second electrodes. Portions of the insulating layer are removed to form first and second contact points. A first conductive layer is in electrical contact with the first electrode and wraps around the PTC element. A portion of the first conductive layer forms a fusible element. A second conductive layer is in electrical contact with the second electrode. The wrap-around configuration of the device allows for an electrical connection to be made to both electrodes from the same side of the electrical device. The wrap-around configuration also permits current to flow in series through the PTC element and the fusible element for added protection from overcurrent conditions.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: May 25, 1999
    Assignee: Littelfuse, Inc.
    Inventor: Katherine M. McGuire
  • Patent number: 5905427
    Abstract: An integrated circuit resistor array suitable for use as resistors included in a high performance analog integrated circuit is provided. A plurality of resistor stripes are collectively arranged in a region on a substrate. The resistor stripes are made of the same material and designed to have the same cross-sectional area. The resistor stripes are electrically connected through first metal layer conductors. Second metal layer conductors connect the stripes to external circuits. Different resistors have matched voltage dependencies.
    Type: Grant
    Filed: September 25, 1996
    Date of Patent: May 18, 1999
    Assignee: Burr-Brown Corporation
    Inventors: Toshihiko Hamasaki, Hitoshi Terasawa, Toshio Murota, Keiji Matsuki
  • Patent number: 5903708
    Abstract: A magneto-resistance effect film of an artificial lattice film structure having an alternate lamination of a conductor layer and a magnetic layer, or a magneto-resistance effect film of a spin bulb structure having a lamination of a magnetic layer, a conductor layer and a magnetic layer in that order. The conducting layer is mainly composed of an element selected from the group consisting of Cu, Ag and Cr and also contains 0.1 to 30 atomic percent of an addition element having an upper limit of solid solution at room temperature with respect to the element as the main component of not more than 1 percent. Alternatively, the magnetic layer is mainly composed of Fe, Co or Ni and also contains 0.1 to 30 atomic percent of an addition element having an upper limit of solid solution at room temperature with respect to the element as the main component of not more than 1%. Additionally, the thermal resistance can be improved by utilizing a base plate with a heat conductivity of not less than 2 W/mK.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: May 11, 1999
    Assignee: Sony Corporation
    Inventors: Hiroshi Kano, Atsuko Suzuki, Toshihiko Yaoi
  • Patent number: 5900800
    Abstract: An electrical device having a resistive element having a first electrode in electrical contact with the top surface of the resistive element and a second electrode in electrical contact with the bottom surface of the resistive element. An insulating layer is formed on the first and second electrodes. A portion of the insulating layer is removed from the first and second electrodes to form first and second contact points. A conductive layer is formed on the insulating layer and makes electrical contact with the first and second electrodes at the contact points. The conductive layer has portions removed to form first and second end terminations separated by electrically non-conductive gaps. The wrap-around configuration of the device allows for an electrical connection to be made to both electrodes from the same side of the electrical device.
    Type: Grant
    Filed: May 3, 1996
    Date of Patent: May 4, 1999
    Assignee: Littelfuse, Inc.
    Inventors: Katherine M. McGuire, Mike A. Ward
  • Patent number: 5898360
    Abstract: A ceramic heater for a gas sensor has a heater substrate, a laminating substrate made of the same material as the heater substrate, and an electrode made of platinum and at least one lanthanide oxide disposed between the heater substrate and the laminating substrates. The ceramic heater exhibits improved durability without migration patterns, is free of cracks on the substrate, is free of short circuits in the heat electrode and is low in production cost.
    Type: Grant
    Filed: June 10, 1997
    Date of Patent: April 27, 1999
    Assignee: Samsung Electro Mechanics, Co., Ltd.
    Inventor: Chang-bin Lim
  • Patent number: 5891751
    Abstract: A reduced size, hermetically sealed semiconductor transducer and methods for fabricating the same. In a preferred embodiment, the transducer comprises a transducer wafer including a diaphragm which deflects upon the application of a force thereto. At least one semiconductor transducer element and one electrical contact are disposed on a top surface of the transducer wafer, with the electrical contact coupled to the semiconductor element and extending to a peripheral portion of the wafer. A cover member is provided that is dimensioned to surround the semiconductor element. A peripheral glass frit bond is formed between the cover member and the transducer wafer, and between the cover member and at least a portion of the electrical contact. An aperture is formed in a top portion of the cover member, positioned above a region bounded by the peripheral glass bond. This aperture functions to prevent air gap formation in the peripheral glass frit bond.
    Type: Grant
    Filed: September 9, 1996
    Date of Patent: April 6, 1999
    Assignee: Kulite Semiconductor Products, Inc .
    Inventors: Anthony D. Kurtz, Alexander Ned
  • Patent number: 5889460
    Abstract: An electrical resistance temperature sensor (11) contained in a stainless steel, tubular jacket (12), which has a very small diameter of approximately 1 mm, a platinum resistance coil (18) running between two joining bolts (14, 19). The resistance coil with a positive temperature characteristic of the resistance is placed in an embedding medium (17), which comprises a mixture of magnesium oxide or aluminium oxide and cerium dioxide.For use as an integrating temperature sensor for a catalytic converter, said adequately flexible temperature sensor can be wound into a roll of smooth and corrugated metal sheets and fixed by soldering in vacuo.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: March 30, 1999
    Assignee: E.G.O. Elektro-Geratebau GmbH
    Inventors: Volker Bachmann, Lutz Ose
  • Patent number: 5889459
    Abstract: According to the present invention, there is provided a metal oxide film resistor which has an insulating substrate, a metal oxide resistive film having at least a metal oxide film having a positive temperature coefficient of resistance and/or a metal oxide film having a negative temperature coefficient of resistance, and/or a metal oxide insulating film. The metal oxide film resistor is not affected by moisture or alkali ions in the insulating substrate. The resistance of the film itself does not change. The metal oxide film resistor is extremely reliable.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: March 30, 1999
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akiyoshi Hattori, Yoshihiro Hori, Masaki Ikeda, Akihiko Yoshida, Yasuhiro Shindo, Kouzou Igarashi
  • Patent number: 5883564
    Abstract: A magnetic field sensor is described that has a 0.25-0.6 micrometer thick magnetically active layer of very high electron mobility that consists essentially of epitaxial indium antimonide. The indium antimonide layer is disposed on a 0.03-1.0 micrometer thick buffer layer of In.sub.1-x Al.sub.x Sb, where "x" is about 0.01-0.2, that is substantially lattice-matched to the indium antimonide active layer.
    Type: Grant
    Filed: September 11, 1996
    Date of Patent: March 16, 1999
    Assignee: General Motors Corporation
    Inventor: Dale Lee Partin
  • Patent number: 5877674
    Abstract: A resistor comprising a substantially continuous resistor element being formed into a plurality of element panels with each panel having at least two holes provided therein. Adjacent element panels are connected in series by a bend in the resistor element. At least two support tubes comprising an insulating material are provided to support the resistor element. A plurality of conductive washers are provided adjacent each hole on both sides of each element panel to provide a conductive heat sink near each support tube hole in the element panels. Insulating washers are spaced between adjacent conductive washers. Two end walls are provided adjacent opposing sides of the resistor element to receive the support tubes.
    Type: Grant
    Filed: September 12, 1996
    Date of Patent: March 2, 1999
    Assignee: Post Glover Resistors Inc.
    Inventor: Robert E. Berger, II
  • Patent number: 5875543
    Abstract: A coil type, noise suppressing high voltage resistor wherein, without applying a releasing agent to the coil core, the adhesiveness of the fluorocarbon polymer in its unvulcanized state is reduced sufficiently so that unwinding of the unvulcanized core, followed by winding of the resistance wire, can be smoothly carried out. On the coil core covered by extrusion coating with a fluorocarbon polymer mixed with ferrite powder, the resistance wire is helically wound. The coil core to which the resistance wire has been applied is then covered in sequence with an insulating layer, a braid for reinforcement, and a sheath. The fluorocarbon polymer is a blend polymer mixture including a reinforcing polymer, preferably an ethylene-vinyl acetate copolymer, which is compatible with the fluorocarbon polymer and can be co-vulcanized therewith. The blend ratio is 5% to 25% by weight of the EVA, based on the total mixture.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: March 2, 1999
    Assignee: Sumitomo Wiring Systems, Ltd.
    Inventors: Terutsugu Fujimoto, Makoto Higashikozono, Hiroshi Inoue
  • Patent number: 5874885
    Abstract: An electrical device (1) in which an element (7) composed of a conductive polymer is positioned in contact with the surface layer of one or more metal electrodes (3,5). The metal electrode contains a base layer (9) which comprises a first metal, an intermediate metal layer (15) which comprises a metal that is different from the first metal, and a surface layer (17) which (i) comprises a second metal, (ii) has a center line average roughness R.sub.a of at least 1.3, and (iii) has a reflection density R.sub.d of at least 0.60. The conductive polymer composition preferably exhibits PTC behavior. The electrical devices, which may be, for example, circuit protection devices or heaters, have improved thermal and electrical performance over devices prepared with electrodes which do not meet the center line average roughness and reflection density requirements.
    Type: Grant
    Filed: March 13, 1997
    Date of Patent: February 23, 1999
    Assignee: Raychem Corporation
    Inventors: Daniel A. Chandler, Martin Matthiesen, Derek Leong, Matthew P. Galla
  • Patent number: 5874886
    Abstract: A magnetoresistance effect element according to the present invention comprises magnetic multilayer film having a non-magnetic metal layer, a ferromagnetic layer formed on one surface of the non-magnetic metal layer, a soft magnetic layer formed on the other surface of the non-magnetic metal layer, and a pinning layer which is formed on the ferromagnetic layer to pin a direction of magnetization of the ferromagnetic layer, wherein the ferromagnetic layer and the pinning layer are coupled to each other with epitaxial growth.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: February 23, 1999
    Assignee: TDK Corporation
    Inventors: Satoru Araki, Daisuke Miyauchi
  • Patent number: 5872502
    Abstract: A magnetoresistance effect film is disclosed. This magnetoresistance effect film comprises a substrate, at least two ferromagnetic thin films stacked one over the other on the substrate with a non-magnetic thin film interposed therebetween, and an antiferromagnetic thin film arranged adjacent to one of the ferromagnetic thin films. The antiferromagnetic thin film is a superlattice formed of at least two oxide antiferromagnetic materials selected from NiO, Ni.sub.x Co.sub.1-x O (0.1.ltoreq.x.ltoreq.0.9) and C.sub.o O. A biasing magnetic field Hr applied to the one ferromagnetic thin film located adjacent the antiferromagnetic thin film is greater than coercive magnetic force Hc2 of the other ferromagnetic thin film.
    Type: Grant
    Filed: August 31, 1995
    Date of Patent: February 16, 1999
    Assignee: NEC Corporation
    Inventors: Jun-ichi Fujikata, Kazuhiko Hayashi, Hidefumi Yamamoto, Kunihiko Ishihara
  • Patent number: 5867087
    Abstract: A three dimensional polysilicon resistor and a method by which the three dimensional polysilicon resistor is manufactured. A semiconductor substrate has formed upon its surface an insulating layer. The insulating layer has a minimum of one aperture formed at least partially through the insulating layer. A polysilicon layer is formed upon the insulating layer and formed conformally into the aperture(s) within the insulating layer. The polysilicon layer is then patterned to form a resistor which includes the portion of the polysilicon layer which resides within the aperture(s).
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: February 2, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shou-Gwo Wuu, Mong-Song Liang, Chen-Jong Wang, Chung-Hui Su
  • Patent number: 5864281
    Abstract: Electrical devices, particularly circuit protection devices, contain conductive polymer elements whose edges are formed by breaking the conductive polymer element, along a desired path, without the introduction of any solid body into the element. The resulting cohesive failure of the conductive polymer produces a distinctive fractured surface. One method of preparing such devices involves etching fracture channels in the electrodes of a plaque containing a PTC conductive polymer element sandwiched between metal foil electrodes, and then snapping the plaque along the fracture channels to form individual devices.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: January 26, 1999
    Assignee: Raychem Corporation
    Inventors: Michael Zhang, Mark S. Thompson, James Toth, William Cardwell Beadling
  • Patent number: 5864283
    Abstract: The microwave frequency chip resistor assembly is used as a terminating device for a video jack. Such an assembly minimizes inductance variation and eliminate soldering associated with conventional metal film resistors.
    Type: Grant
    Filed: December 12, 1996
    Date of Patent: January 26, 1999
    Assignee: King Electronics Co., Inc.
    Inventor: David I. Weinstein
  • Patent number: RE36136
    Abstract: A two-level IR detector imaging array of high fill-factor design. The upper microbridge detector level is spaced above and overlie the integrated circuit and bus lines on the substrate surface below.
    Type: Grant
    Filed: April 4, 1996
    Date of Patent: March 9, 1999
    Assignee: Honeywell Inc.
    Inventors: Robert E. Higashi, James O. Holmen, Robert G. Johnson