Patents Examined by Katherine A. Bareford
  • Patent number: 10669635
    Abstract: A method of coating a substrate includes dispersing functionalized diamond nanoparticles in a fluid comprising metal ions to form a deposition composition; disposing a portion of the deposition composition over at least a portion of a substrate; and electrochemically depositing a coating over the substrate. The coating comprises the diamond nanoparticles and a metal formed by reduction of the metal ions in the deposition composition.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: June 2, 2020
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Othon R. Monteiro, Oleg A. Mazyar, Valery N. Khabashesku
  • Patent number: 10656137
    Abstract: This application discloses a method for developing a conductive nano-gap. The first step can comprise depositing a brittle material on a substrate. Next, a conductive graphene layer can be deposited at the surface of the brittle material. Lastly, a crack can be propagated through the brittle material and the graphene using a force, the crack a nano-gap.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: May 19, 2020
    Inventor: Ethan Pfeiffer
  • Patent number: 10577692
    Abstract: A method of electrolessly plating an iron-based substrate, including immersing an iron-based substrate in an acidic solution, immersing the iron-based substrate in a basic complexing solution, immersing the iron-based substrate in a catalytic metal solution including a catalytic metal, and immersing the iron-based substrate in an electroless nickel plating solution or an electroless cobalt plating solution.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: March 3, 2020
    Inventors: Doreen D. DiMilia, Yu Luo, Janusz J. Nowak, Lubomyr T. Romankiw
  • Patent number: 10547044
    Abstract: A dry electrode manufacturing process employed for low cost battery through a dry mixing and formation process. A thermal activation renders the dry fabricated electrode comparable to conventional slurry casted electrodes. The dry electrode mixture results from a combination of a plurality of types of constituent particles, including at least an active charge material and a binder, and typically a conductive material such as carbon. The process heats the deposited mixture to a moderate temperature for activating the binder for adhering the mixture to the substrate; and compresses the deposited mixture to a thickness for achieving an electrical sufficiency of the compressed, deposited mixture as a charge material in a battery.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 28, 2020
    Assignees: Worcester Polytechnic Institute, The Curators of the University of Missouri
    Inventors: Yan Wang, Zhangfeng Zheng, Brandon Ludwig, Heng Pan
  • Patent number: 10526701
    Abstract: Methods of depositing uniform films on substrates using multi-cyclic atomic layer deposition techniques are described. Methods involve varying one or more parameter values from cycle to cycle to tailor the deposition profile. For example, some methods involve repeating a first ALD cycle using a first carrier gas flow rate during precursor exposure and a second ALD cycle using a second carrier gas flow rate during precursor exposure. Some methods involve repeating a first ALD cycle using a first duration of precursor exposure and a second ALD cycle using a second duration of precursor exposure.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: January 7, 2020
    Assignee: Lam Research Corporation
    Inventors: Purushottam Kumar, Adrien LaVoie, Hu Kang, Jun Qian, Tuan Nguyen, Ye Wang
  • Patent number: 10513772
    Abstract: Methods are disclosed herein for depositing a passivation layer comprising fluorine over a dielectric material that is sensitive to chlorine, bromine, and iodine. The passivation layer can protect the sensitive dielectric layer thereby enabling deposition using precursors comprising chlorine, bromine, and iodine over the passivation layer.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: December 24, 2019
    Assignee: ASM International N.V.
    Inventors: Tom E. Blomberg, Eva E. Tois, Robert Huggare, Jan Willem Maes, Vladimir Machkaoutsan, Dieter Pierreux
  • Patent number: 10500605
    Abstract: An apparatus for coating electrode active material slurry includes: a transfer unit continuously transferring an electrode current collector in a predetermined process direction; and a coating die which is reciprocally movable in the process direction or an opposite direction to the process direction and coats the active material slurry on a predetermined coating area of the electrode current collector transferred by the transfer unit, wherein the coating die stands by at a predetermined coating start position and, when a balcony region corresponding to a leading end of the coating area reaches the coating start position, coats the active material slurry on the balcony region while moving from the coating start position to a main coating position that is spaced apart from the coating start position by a predetermined distance in the opposite direction.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: December 10, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Jin-Young Son, Taek-Soo Lee, Hyun-Won Lee, Ki-Won Sung, Do-Hwa Jung
  • Patent number: 10505246
    Abstract: A method for preventing corona effects in an electronic circuit comprising the steps of applying a parylene coating to a surface of the electronic circuit, and applying a polyalphaolefin dielectric oil having a dielectric constant that is lower than that of the parylene coating on an exposed surface of the first material.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: December 10, 2019
    Assignee: Lockheed Martin Corporation
    Inventor: Kevin L. Robinson
  • Patent number: 10480067
    Abstract: A film deposition method for filling a recessed pattern with a SiN film is provided. NH2 groups are caused to adsorb on a surface of a substrate containing a recessed pattern formed in a top surface of the substrate by supplying a first process gas containing NH3 converted to first plasma to the surface of the substrate containing the recessed pattern. The NH2 groups is partially converted to N groups by supplying a second process gas containing N2 converted to second plasma to the surface of the substrate containing the recessed pattern on which the NH2 groups is adsorbed. A silicon-containing gas is caused to adsorb on the NH2 groups by supplying the silicon-containing gas to the surface of the substrate containing the recessed pattern on which the NH2 groups and the N groups are adsorbed. The above steps are cyclically repeated.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: November 19, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Hitoshi Kato, Masahiro Murata, Jun Sato, Shigehiro Miura
  • Patent number: 10431833
    Abstract: A method of coating an interconnect for a solid oxide fuel cell includes providing an interconnect including Cr and Fe, and coating an air side of the interconnect with a manganese cobalt oxide spinel coating using a plasma spray process.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: October 1, 2019
    Inventors: James Wilson, Manoj Pillai, Tad Armstrong
  • Patent number: 10385459
    Abstract: Disclosed herein are methods for fabricating layered ceramic materials via field assisted sintering technology. A method includes forming a ceramic green body on a surface of a substrate, and sintering the ceramic green body using a field-assisted sintering process to form a ceramic layer joined to the substrate.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: August 20, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Yikai Chen, Biraja Prasad Kanungo
  • Patent number: 10358723
    Abstract: A method of forming surface modified substrates includes providing a substrate of material (M) having a bulk portion and an outer surface integrated with the bulk portion. A coating is deposited including metal organic molecules including at least one metal X or particles of metal X onto the outer surface. The coating is laser irradiated with a laser beam, where atoms of metal X diffuse into the outer surface to form a modified surface layer including both M and atoms of metal X on the bulk portion. The modified surface layer has a thickness of at least 1 nm, and a 25° C. electrical conductivity that is at least 2.5% above or 2.5% below a 25° C. electrical conductivity in the bulk portion.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: July 23, 2019
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Rajan Vaidyanathan, Aravinda Kar
  • Patent number: 10280514
    Abstract: This invention relates to an object with electroless plated coatings that includes an adhesion coating, a smoothening coating, a silver coating and an anti-scratch coating. A method of fabricating the electroless plated object is also described.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: May 7, 2019
    Assignee: S.T. Trading Company Limited
    Inventors: Jianying Miao, Wei Li, Shing Hang Ng, Lok Hang Keung, Tao Gong
  • Patent number: 10279365
    Abstract: A thermal spray system and method includes a hot gas generator with nozzle accelerating heated gas towards a substrate in the form of a gas column projecting onto the substrate surface as a spot. One or more feedstock injectors proximate the nozzle exit, directed towards the gas column, are connected to a feedstock source. The hot gas stream transfers heat and momentum to the feedstock, causing the feedstock particles to impact onto a substrate to form a coating. The system further comprises one or more liquid injectors proximate the nozzle exit, directed towards the axis, and connected to a source of liquid. The system controls the flow and velocity with which the liquid is injected, permitting control of the depth of penetration of the liquid into the gas column. The method selectively prevents suboptimal feedstock particulates from adhering to the substrate and provides for the in-situ removal of suboptimal deposits.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: May 7, 2019
    Assignee: Progressive Surface, Inc.
    Inventor: Kent VanEvery
  • Patent number: 10125053
    Abstract: A method of treating a ceramic surface containing zirconia, whereby the ceramic surface is ablated by directing a laser beam with a diameter of 200-400 ?m produced by a CO2 laser with a pulse frequency of 1200-1800 Hz onto the ceramic surface, and a N2 assist gas is concurrently applied with a pressure of 550-650 KPa co-axially with the laser beam to form an ablated ceramic surface comprising microgrooves with ZrN present on a surface of the microgrooves, wherein the ablated ceramic surface has a higher surface hydrophobicity than the ceramic surface prior to the ablating.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: November 13, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Bekir Sami Yilbas, Haider Ali
  • Patent number: 10128467
    Abstract: The invention relates to a method for depositing a target material onto an organic electrically functional material. The method includes the steps of: providing a substrate with an organic electrically functional material, like an emissive electroluminescent layer; creating a vapor plume of target material by pulsed laser deposition; depositing a first layer of target material on the organic electrically functional material, while maintaining the maximum particle velocity of the deposited particles below a preset value; and depositing a second layer of target material on the first layer of target material, while the maximum particle velocity of the deposited particles is above the preset value. The invention also relates to an intermediate product and to an organic light emitting diode.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: November 13, 2018
    Assignee: Solmates B.V.
    Inventors: Jan Matthijn Dekkers, Jan Arnaud Janssens
  • Patent number: 10072331
    Abstract: A formation method of a silicon film which contributes to improvements in cycle characteristics and an increase in charge/discharge capacity and can be used as an active material layer is provided. In addition, a manufacturing method of a power storage device including the silicon film is provided. The formation method is as follows. A crystalline silicon film is formed over a conductive layer by an LPCVD method. The supply of a source gas is stopped and heat treatment is performed on the silicon film while the source gas is exhausted. The silicon film is grown to have whisker-like portions by an LPCVD method while the source gas is supplied into the reaction space. A power storage device is manufactured using, as an active material layer included in a negative electrode, the silicon film grown to have whisker-like portions.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 11, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshihiko Takeuchi, Kazutaka Kuriki, Makoto Ishikawa
  • Patent number: 10060034
    Abstract: Electroless copper plating compositions including (a) copper ions, (b) a complexing agent for copper ions, (c) a reducing agent, (d) a pH adjustor and (e) a stabilizer is disclosed. The stabilizer has a specific chemical structure, and contributes to stable an electroless copper plating composition from decomposition.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: August 28, 2018
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Meng Qi, Sze Wei Chum, Ping Ling Li
  • Patent number: 9988713
    Abstract: A method for preparing a device having a film on a substrate is disclosed. In the method, a film is deposited on a polymeric substrate. The film includes at least one metal. A metal in the film is converted to a metal oxide using microwave radiation. One example device prepared by the method includes a polyethylene napthalate substrate and a film on the substrate, wherein the film includes a semiconducting copper oxide and silver as a dopant.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: June 5, 2018
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Terry Alford, Sayantan Das
  • Patent number: 9972415
    Abstract: Resin composition comprising a) the reaction product of a1) one or more epoxy compounds having at least 2 epoxy groups, and a2) sorbic acid as component A; b) a solvent containing vinyl groups as component B.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: May 15, 2018
    Assignee: ELANTAS GMBH
    Inventors: Majdi Al Masri, Anne-Gönke Huesmann, Klaus-Wilhelm Lienert, Hans-Ulrich Moritz