Patents Examined by Katherine A. Bareford
  • Patent number: 11511307
    Abstract: A power storage device and an applicator is obtained that achieve an increase in capacity and an improvement in productivity, and that enable the thickness of a mixture layer to be inhibited from varying. A positive electrode mixture slurry is discharged into discharge regions of a belt-like positive electrode current collector that extend in a length direction of the positive electrode current collector from discharge nozzles corresponding to the respective discharge regions to form a positive electrode mixture layer on the positive electrode current collector. The discharge regions are arranged such that a part of each of the discharge regions overlaps a part of another of the discharge regions adjacent thereto when viewed in the length direction to form overlapping portions. The positive electrode mixture slurry is intermittently discharged to form an exposed portion on at least one of the discharge regions.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: November 29, 2022
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Masashi Tsukamoto, Tomofumi Yanagi, Motoki Kinugawa
  • Patent number: 11511316
    Abstract: There is provided a plasma annealing device that can change the crystal structure of a film by processing the film (coating) on a substrate and that has excellent productivity. A method for producing a film includes step (A) irradiating a film on a substrate with atmospheric pressure plasma, wherein the crystal structure of a constituent of the film is changed. The step (A) may include generating plasma under atmospheric pressure by energization at a frequency of 10 hertz to 100 megahertz and a voltage of 60 volts to 1,000,000 volts, and directly irradiating the film on the substrate with the generated plasma. A method for changing a crystal structure of a constituent of a film includes step (A). A plasma generation device used in step (A). An electronic device produced through step (A).
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: November 29, 2022
    Assignee: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventor: Hitoshi Furusho
  • Patent number: 11508495
    Abstract: An automated process for producing exposed electrical contact areas on the conductor part of an epoxy coated bus bar. When the epoxy coating is in the glassy state, one can safely and economically, preferably via automated apparatus, put the epoxy into the rubbery state by positioning the bar and applying localized heat at a select area of the coating; monitoring the heating to above the glass transition temperature of the epoxy, bringing cutting tools into contact with the epoxy for cutting and removing the rubbery coating away from the bus bar, and cooling the bus bar to bring adjacent coating back to the glassy state, thereby leaving an exposed electrical contact area of conductor on the bus bar with little or no surface damage.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: November 22, 2022
    Assignee: Schneider Electric USA, Inc.
    Inventor: John A Wittwer
  • Patent number: 11508908
    Abstract: A method for manufacturing a mask may include the following steps: preparing a substrate; providing a first coating, which may be optically transparent, may cover a covered portion of the substrate, and may expose exposed portions of the substrate; forming a scattering layer between the first coating layer and the covered portion of the substrate; and removing the exposed portions of the substrate to form mask holes.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: November 22, 2022
    Inventors: Jeongkuk Kim, Kyuhwan Hwang
  • Patent number: 11479856
    Abstract: Methods of depositing uniform films on substrates using multi-cyclic atomic layer deposition techniques are described. Methods involve varying one or more parameter values from cycle to cycle to tailor the deposition profile. For example, some methods involve repeating a first ALD cycle using a first carrier gas flow rate during precursor exposure and a second ALD cycle using a second carrier gas flow rate during precursor exposure. Some methods involve repeating a first ALD cycle using a first duration of precursor exposure and a second ALD cycle using a second duration of precursor exposure.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: October 25, 2022
    Assignee: Lam Research Corporation
    Inventors: Purushottam Kumar, Adrien LaVoie, Hu Kang, Jun Qian, Tuan Nguyen, Ye Wang
  • Patent number: 11466355
    Abstract: Electroless underwater metal plating of a surface of fixed or floating structure is accomplished by transferring to the surface metal ions from a metal precursor in a solid or semisolid electrolyte that is pressed against and moved over a submerged surface. Metal ions from a metal salt blended in the solid or semisolid material plate the underwater substrate.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: October 11, 2022
    Assignee: OCEANIT LABORATORIES, INC.
    Inventors: Ganesh K. Arumugam, Matthew A. Nakatsuka, Sumil S. Thapa
  • Patent number: 11459481
    Abstract: A method for forming a hydrophobic coating on a substrate by a thermal spray deposition process is described. The method may comprise feeding a thermal spray apparatus with a coating precursor consisting of particles having an initial particle morphology, and heating the particles with the thermal spray apparatus to cause the particle to at least partially melt. The method may further comprise accelerating the particles towards the substrate, and forming the hydrophobic coating on the substrate by allowing the particles to impact the substrate in a partially melted state in which a fraction of the initial particle morphology of at least some of the particles is retained.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: October 4, 2022
    Assignee: The Boeing Company
    Inventors: Gregory M. Newbloom, William A. Thompson, Marc J. Froning, Arash Ghabchi
  • Patent number: 11450804
    Abstract: Subject matter disclosed herein may relate to construction of a correlated electron material (CEM) device. In particular embodiments, after formation of a film comprising layers of a transition metal oxide (TMO) material and a dopant, at least a portion of the film may be exposed to an elevated temperature. Exposure of the at least a portion of the film to the elevated temperature may continue until the atomic concentration of the dopant within the film is reduced, which may enable operation of the film as a correlated electron material CEM exhibiting switching of impedance states.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: September 20, 2022
    Assignee: CERFE LABS, INC.
    Inventors: Carlos Alberto Paz de Araujo, Jolanta Bozena Celinska, Lucian Shifren
  • Patent number: 11314347
    Abstract: A method for manufacturing a display device according to an exemplary embodiment of the present inventive concept includes: forming a digitizer assembly; and attaching the digitizer assembly to a bottom of a display panel, wherein the forming the digitizer assembly comprises forming through-hole portions in a heat dissipation sheet layer, forming a digitizer board by sequentially attaching a buffering sheet layer, a digitizer layer, a shield sheet layer, and the heat dissipation sheet layer, and forming a plurality of digitizer assemblies by cutting the digitizer board, wherein the through-hole portions partially expose the shield sheet layer and are disposed at corners of the digitizer assembly.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: April 26, 2022
    Inventor: Dong-Gyu Lee
  • Patent number: 11274369
    Abstract: A thin film deposition method with respect to a substrate including a pattern structure includes supplying RF power through a component disposed below a substrate, forming a potential on an exposed surface of the substrate exposed to a reaction space, moving the active species to the exposed surface in the reaction space using the potential, and forming a thin film including active species component on the exposed surface of the substrate.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: March 15, 2022
    Assignee: ASM IP Holding B.V.
    Inventors: KiChul Um, JeungHoon Han, DooHan Kim, YongGyu Han, TaeHee Yoo, WanGyu Lim, DongHyun Ko
  • Patent number: 11192822
    Abstract: A method for plating nickel onto a glass surface of a substrate by sequentially contacting the surface with a solution having an oxidizing agent, a solution containing a silane compound, a Pd/Sn solution, and a nickel ion-containing solution, thereby accomplishing an electroless nickel plating process.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: December 7, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Mohd Aizat Abdul Wadi, Shian Ming Liew, Shan Lih Lim
  • Patent number: 11131014
    Abstract: A ceramic substrate is irradiated in an atmospheric air with a laser having a power density of 1.0×107-1.0×109 W/cm2 for an action time on an irradiation area of 1.0×10?7-1.0×10?5 s to roughen a surface of the ceramic substrate, as well as to form an oxide layer on a roughened surface. A thermal sprayed coating formed on the ceramic substrate sufficiently adheres to the ceramic substrate via the oxide layer.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: September 28, 2021
    Assignee: TOCALO CO., LTD.
    Inventors: Hiroki Yokota, Daisuke Kawai, Tatsuo Suidzu
  • Patent number: 11118257
    Abstract: A method of manufacturing a fiber reinforced coating. The method includes providing a substrate and plasma spraying a ceramic matrix having fibers encapsulated in a precursor material onto the substrate.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: September 14, 2021
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventor: Christopher W. Strock
  • Patent number: 11078073
    Abstract: Provided is a self-processing synthesis of hybrid nanostructures, novel nanostructures and uses thereof in the construction of electronic and optoelectronic devices.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: August 3, 2021
    Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem Ltd.
    Inventors: Roie Yerushalmi, Yossef Paltiel, Ori Pinchas-Hazut, Sharon Waichman, Amir Ziv, Shira Yochelis
  • Patent number: 11056685
    Abstract: A method of fabricating nanocomposite anode material embodying a lithium titanate (LTO)-multi-walled carbon nanotube (MWNT) composite intended for use in a lithium-ion battery includes providing multi-walled carbon nanotube (MWNTs), including nanotube surfaces, onto which functional oxygenated carboxylic acid moieties are arranged, generating 3D flower-like, lithium titanate (LTO) microspheres, including thin nanosheets and anchoring the acid-functionalized MWNTs onto surfaces of the 3D LTO microspheres by ?-? interaction strategy to realize the nanocomposite anode material.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: July 6, 2021
    Assignee: The Research Foundation for the State University of New York
    Inventors: Stanislaus Wong, Lei Wang, Coray McBean, Amy C. Marschilok, Kenneth Takeuchi, Esther S. Takeuchi
  • Patent number: 11047052
    Abstract: The present invention provides a resin plating method using an etching bath containing manganese as an active ingredient, the method being capable of maintaining stable etching performance even during continuous use. The resin plating method includes: an etching step, which uses a resin material-containing article as an object to be treated and etches the article using an acidic etching bath containing manganese; a catalyst application step, which uses palladium as a catalyst metal; and an electroless plating step; and the method further includes a step of maintaining the palladium concentration in the acidic etching bath at 100 mg/L or less.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: June 29, 2021
    Assignee: OKUNO CHEMICAL INDUSTRIES CO., LTD.
    Inventors: Shingo Nagamine, Koji Kita, Kuniaki Otsuka
  • Patent number: 10982329
    Abstract: Provided are an insulation-coated oriented magnetic steel sheet having an insulating coat with excellent heat resistance; and a method for manufacturing the same. This insulation-coated oriented magnetic steel sheet has an oriented magnetic steel sheet, and an insulating coat arranged on the surface of the oriented magnetic steel sheet, the insulating coat containing Si, P, O, and Cr, and at least one element selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al, and Mn. The XPS spectrum of the outermost surface of the insulating coat has peaks observed at Cr2p1/2 and Cr2p3/2.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: April 20, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Takashi Terashima, Kazutoshi Hanada, Ryuichi Suehiro, Makoto Watanabe, Toshito Takamiya
  • Patent number: 10982311
    Abstract: A design method of tangential gradient thermal spraying coating for complex profile workpieces solves the erosion-resistant problem, and obtains a corresponding relation between the ductile-brittle ratio of the thermal sprayed coating and the impact angle change. The method includes: determining the complex profile part surface impact angle change rule according to the part operation environment conditions; selecting an erosion-resistant coating material according to the service condition requirement; obtaining the relation among the impact angle, ductile-brittle angle and erosion rate of the coating by an erosion test; determining the coating and the impact angle ductile-brittle corresponding relation curve; and performing spraying by using dual-channel powder feeding thermal spraying equipment the powder feeding quantity of which is adjustable in real time, based on a matching relation between the tangential gradient coating and the surface impact angle.
    Type: Grant
    Filed: September 30, 2018
    Date of Patent: April 20, 2021
    Assignee: SHANDONG UNIVERSITY
    Inventors: Fangyi Li, Haiyang Lu, Zhen Li, Jiyu Du, Jiantong Shang, Jianfeng Li, Liming Wang, Yanle Li, Ziwu Liu, Xingyi Zhang, Xueju Ran
  • Patent number: 10920323
    Abstract: Provided are an insulating-coated oriented magnetic steel sheet having an insulating coating of excellent heat resistance, and a method for manufacturing the same. This insulating-coated oriented magnetic steel sheet has an oriented magnetic steel sheet, and an insulating coating arranged on the surface of the oriented magnetic steel sheet. The insulating coating contains Si, P, and O, and at least one element selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al, and Mn, the K-absorption edge of the P in the insulating coating having an XAFS spectrum that exhibits three absorption peaks from 2156 eV to 2180 eV.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: February 16, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Takashi Terashima, Kazutoshi Hanada, Ryuichi Suehiro, Makoto Watanabe, Toshito Takamiya
  • Patent number: 10892065
    Abstract: The present invention provides a method for forming a metal pattern on a pattern formation section set in a part or the whole of a region on a base material, the base material including a fluorine-containing resin layer on a surface including at least the pattern formation section, the method including the step of: forming a functional group on a pattern formation section of the fluorine-containing resin layer by a treatment such as ultraviolet-ray irradiation, then applying to the surface of the base material a metal fine particle dispersion liquid in which metal fine particles protected by an amine compound as a first protective agent and a fatty acid as a second protective agent are dispersed in a solvent, and fixing the metal fine particles on the pattern formation section.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: January 12, 2021
    Assignees: TANAKA KIKINZOKU KOGYO K.K., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Satoshi Miyazaki, Yuichi Makita, Hitoshi Kubo, Tatsuo Hasegawa, Toshikazu Yamada