Patents Examined by Kawing Chan
  • Patent number: 11929700
    Abstract: An electric motor control device that can accurately calculate the rotating speed of an electric motor. The electric motor control device includes a speed calculating unit configured to receive, from a position detector that detects a rotational position of an electric motor and outputs a position detection signal including a periodic error determined according to the rotational position, an input of the position detection signal, receive, from a time detector that outputs a position change time signal obtained by detecting a time period in which the position detection signal output from the position detector changes, an input of the position change time signal, and calculate rotating speed of the electric motor based on the position detection signal and the position change time signal. Further, there is a speed correcting unit for correcting a periodic speed error determined according to the rotational position of the electric motor.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: March 12, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Toshiaki Kato, Yasushi Otsuka
  • Patent number: 11929701
    Abstract: The electronic apparatus including a DC motor that is driven based on a current supplied from a power source, and including: a detection circuit that detects an instantaneous interruption of the power source; an H bridge circuit having an upper arm circuit having two switching elements connected in parallel to the power source and a lower arm circuit having two switching elements connected in parallel to a ground, the upper arm circuit and the lower arm circuit being connected in series, and controlling a current to be supplied to the DC motor; and a switching control circuit that controls the switching element, and in a case where an instantaneous interruption of the power source is detected by the detection circuit, the switching control circuit sets the switching elements of the upper arm circuit to off and sets the switching elements of the lower arm circuit to on.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: March 12, 2024
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keiji Harada, Masayuki Hongo
  • Patent number: 11916507
    Abstract: A motor controller to control rotational speed of an output shaft of an electric motor. The motor controller includes a proportional controller and a time-optimal controller. The proportional controller controls the rotational speed when a present rotational position of the shaft is between a target rotational position and a switching point, inclusively. The time-optimal controller controls the rotational speed when the present rotational position is not between the target rotational position and the switching point. Also introduced herein are aspects pertaining to determining the switching point in a manner that minimizes overshooting the target rotational position while maximizing expediency at which the target rotational position is reached.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: February 27, 2024
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Jian Wu, Ramakrishna Madhireddy, Nathaniel Wicks
  • Patent number: 11909344
    Abstract: A control device includes a processor configured to control operation of an inverter by a synchronous pulse width modulation control using a pulse width modulation signal. The inverter is coupled to a motor. The pulse width modulation signal is generated by comparison of a carrier signal and a voltage command. In the synchronous pulse width modulation control, on the condition that resonance is caused, in a circuit including the inverter, by a particular harmonic component out of harmonic components to be generated in accordance with the pulse width modulation signal, the processor is configured to change the number of pulses of the carrier signal in one cycle of the voltage command, from the main number of pulses to the sub-number of pulses.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: February 20, 2024
    Assignee: SUBARU CORPORATION
    Inventor: Kazuma Shimojo
  • Patent number: 11909346
    Abstract: An electric motor system includes a drive shaft, a first electric motor, a second electric motor, a first inverter, a second inverter and a control unit. The drive shaft is rotatable around an axis. The first electric motor and the second electric motor rotate the drive shaft. The first inverter supplies power in order to generate a torque to the first electric motor. The second inverter supplies power in order to generate a torque to the second electric motor. The control unit controls the first inverter and the second inverter. The controller is configured to be able to change a ratio between an output torque of the first electric motor and an output torque of the second electric motor.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: February 20, 2024
    Assignee: Daikin Industries, Ltd.
    Inventors: Takaaki Ono, Yusuke Irino, Hiroshi Hibino
  • Patent number: 11909347
    Abstract: A stepping motor control device includes a driving unit that drives a stepping motor including a rotor that rotates a hand and a coil that generates a magnetic flux for rotating the rotor, a control unit that outputs, to the driving unit, a driving pulse for rotating the rotor and a swinging pulse for swinging the rotor, a voltage detecting unit that detects an induced voltage generated in the coil when the rotor vibrates, and a determining unit that determines, based on a result of the detection of the voltage detecting unit, a mechanical load received by the rotor.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: February 20, 2024
    Assignee: SEIKO WATCH KABUSHIKI KAISHA
    Inventors: Akihito Okumura, Kosuke Yamamoto, Tetsuya Nobe, Kazumi Sakumoto
  • Patent number: 11909197
    Abstract: A motor drive device includes a reactor, a converter circuit, a capacitor, an inverter circuit, and overcurrent determination units. The converter circuit converts a first AC voltage output from an AC power supply into a DC voltage. The capacitor smooths a second voltage on the DC side of the converter circuit. The inverter circuit converts DC power stored in the capacitor into AC power. One of the overcurrent determination units determines overcurrent based on a detected value of the first AC current, flowing between the AC power supply and the converter circuit. Another overcurrent determination unit determines overcurrent based on a detected value of the second DC current, flowing between the converter circuit and the capacitor. The converter and inverter circuits stop operating when the determination result of one of the overcurrent determination units indicates an overcurrent.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: February 20, 2024
    Assignee: Mitsubishi Electric Corporation
    Inventors: Satoru Ichiki, Takuya Shimomugi, Koichi Arisawa, Keisuke Uemura, Kenji Iwazaki
  • Patent number: 11901851
    Abstract: A motor drive control device 1_2 includes a target point determination unit 12_2 determining a target point P of zero crossing of a coil current Iu of a U phase based on a position detection signal Shu, a current zero crossing point estimation unit 14_2 estimating a zero crossing point Q of the coil current Iu of the U phase by detecting a change in a current direction of the coil current Iu of the U phase at a predetermined timing in every cycle of a PWM signal, an adjustment instruction signal generation unit 19_2 generating at least one of a phase adjustment instruction signal Sp for instructing phase adjustment of the coil current Iu and a frequency adjustment instruction signal Sf for instructing frequency adjustment of the PWM signal according to a phase difference ?? between the target point P and the zero crossing point Q such that the phase difference is within a predetermined range, and a drive control signal generation unit 16_2 generating a drive control signal Sd based on at least one of the phas
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: February 13, 2024
    Assignee: MINEBEA MITSUMI Inc.
    Inventors: Masato Aoki, Hiroyuki Kaidu, Wataru Nogamida, Syu Hayashi, Takahiro Asami
  • Patent number: 11901853
    Abstract: For determining rotation of a de-energized electric machine without accessing the machine, wherein the machine in the energized state rotates in a reference direction, a computer system determines, for at least one waveform of at least one set of multi-phase electrical power indicia measured remotely from the machine, that a first time segment of the at least one waveform corresponds to an energized state of the machine and that a second time segment of the at least one waveform corresponds to a de-energized state of the machine. The computer system also determines that the machine in the de-energized state has rotated in a direction reverse to the reference direction, wherein the determining that the machine in the de-energized state has rotated in a direction reverse to the reference direction includes comparing the first and second time segments of the at least one waveform.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: February 13, 2024
    Inventors: Alexander George Parlos, Gang Li
  • Patent number: 11894792
    Abstract: A motor control device includes an energization control unit and an excessive return determination unit. The energization control unit controls energization to a motor. The excessive return determination unit determines whether or not there is a possibility of an excessive return exceeding an allowable return position, when a non-energization return control is performed to return a motor in a direction away from a movable limit position by an external force generated in the rotation transmission system by turning off the energization to the motor after driving the motor to the movable limit position where the drive is restricted by the drive limiting portion. When it is determined that there is no possibility of the excessive return, the energization is continuously turned off, and when it is determined that there is a possibility of the excessive return, a stop control configured to stop the motor by energizing is performed.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: February 6, 2024
    Assignee: DENSO CORPORATION
    Inventor: Jun Yamada
  • Patent number: 11888430
    Abstract: A motor drive receives a position feedback signal from an encoder operatively connected to the motor. The motor drive executes a speed regulator module on a first periodic interval to achieve desired operation of the motor, and the motor drive executes an additional module at a second periodic interval, occurring more frequently than the first periodic interval, to increase the resolution of the position feedback. The position feedback signal is provided as or converted to counts. The motor drive maintains a first counter with a running total of each count received as well as a second counter which generates a higher resolution value than the first counter. During each second periodic interval the motor drive increments the high-resolution counter by the number of actual counts detected within the corresponding first periodic interval. This high-resolution counter is used by the speed regulator to obtain desired operation of the motor.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: January 30, 2024
    Assignee: Magnetek, Inc.
    Inventors: John A. Backman, Bryan Radke
  • Patent number: 11888380
    Abstract: The present invention relates to a linear actuator comprising a console, an outer tube connected to the console, an electric motor, a transmission, and a spindle in connection with the transmission. The linear actuator comprises a spindle nut on the spindle and an inner tube connected to the spindle nut. The spindle nut and the inner tube are guided inside the outer tube. The linear actuator comprises a control box which is connected to the console by means of a snap connection. The linear actuator further comprises an end stop arrangement having an end switch for each direction of movement of the spindle nut. An object underlying the invention is to provide a simpler connection of the control box to the linear actuator. A further object is to provide a less complex construction of the end stop arrangement of a linear actuator. To this end, the control box is connected to the console by means of a snap connection.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: January 30, 2024
    Assignee: Linak A/S
    Inventors: Martin Kahr Knudsen, Henrik Skovby, René Sørensen
  • Patent number: 11885848
    Abstract: A device for assessing remaining life of a rotating electrical machine includes: a data acquisition unit configured to acquire actual running performance data and electrical data about the rotating electrical machine to be assessed; an index value calculation unit configured to calculate a first index value to a third index value based on the acquired data, and to calculate, as a fourth index value, an estimation value of a residual withstand voltage value of the rotating electrical machine by performing analysis that uses an MT method on each piece of the electrical data; and an insulation deterioration estimation unit configured to assess the remaining life of the rotating electrical machine by estimating the remaining life of the rotating electrical machine with use of four index values from the first index value to the fourth index value.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 30, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tadao Otani, Kazuo Hayashi, Hiroshige Fujita, Wataru Nagaya, Shinsuke Miki
  • Patent number: 11888431
    Abstract: A method includes driving a selected motor winding to be in a tri-state during a time interval having a finite time length value of a time window, sensing a zero-crossing (ZC) of an oscillating back electromotive force induced in the motor winding during the time window in which the motor winding is in the tri-state, and producing a ZC sensing signal, which has a first edge at a first time instant at the sensed ZC and a second edge at a second time instant separated from the first time instant by a half oscillation of the oscillating back electromotive force, detecting a phase of a current flowing in the motor winding at a time instant time-shifted with respect to the second time instant of the second edge of the ZC sensing signal, and adjusting the finite time length value based on the detected phase of the current.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: January 30, 2024
    Assignee: STMicroelectronics S.r.l.
    Inventor: Ezio Galbiati
  • Patent number: 11888424
    Abstract: A method of controlling an electric machine having a separately excitable rotor and stator includes pulsing the electric machine and controlling the electric machine to an OFF state. Pulsing the electric machine includes exiting the rotor with direction current and the stator with a stator biasing current at the same time to generate magnetic flux in the rotor via two separate paths. Pulsing the electric machine may also include terminating the stator basing current when a desired magnetic flux is generated in the rotor. Pulsing the electric machine may include proving a stator flux to the stator such that the electric machine provides a pulse torque.
    Type: Grant
    Filed: May 22, 2023
    Date of Patent: January 30, 2024
    Assignee: Tula eTechnology, Inc.
    Inventors: Paul Carvell, Philippe Farah
  • Patent number: 11880128
    Abstract: A non-sensor type closed-loop stabilization control algorithm comprises the following steps: 1, reading all voltages Vk?1 and currents Ik?1 for driving a multi-axis stabilization motor; 2, calculating and outputting all coil resistances Rk?1 in the multi-axis stabilization motor; 3, reading all the coil resistances, voltages and currents in the steps 1 and 2, and calculating and outputting counter electromotive force Ek?1 of all the coils in the multi-axis stabilization motor; 4, reading an stabilization compensation angle ?k, each coil resistance and the counter electromotive force, and calculating and outputting a closed-loop stabilization control Fk; and 5, then waiting for a time step k=k+1, and repeating the steps in the steps 1 to 4. It aims to add a closed-loop control element to a motor without a sensor to achieve an excellent stabilization effect and to reduce the risk of image blurring caused by resonance.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: January 23, 2024
    Assignee: VISTA INNOTECH LIMITED
    Inventors: Lin Chi Mak, Yee Chung Chu
  • Patent number: 11877769
    Abstract: The present invention comprises at least sensing, monitoring, and display of motor current which is then used in various embodiments of a rotational atherectomy device to determine and/or predict, among other things, treatment progression, treatment completion, optimal rotational speed, optimal advancement or traversal speed during treatment, whether stall appears imminent, and/or reacting to stop motor rotation before a stall occurs. In some embodiments, the determination or prediction results in an automatic, or preprogrammed adjustment by the control unit of the rotational speed of the rotating drive shaft and associated tool.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: January 23, 2024
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Nicholas Ellering, Jacob P. Draxler, Matthew W. Tilstra, Joseph P. Higgins
  • Patent number: 11881701
    Abstract: A DC-overcurrent detector includes: at least one electric line passing the detector from a source terminal of the detector to a load terminal of the detector; at least one first sensor for monitoring an electric current in the at least one electric line and outputting a current measurement signal; at least one current flow direction sensor for distinguishing a current flow direction of the electric current in the at least one electric line between a first direction from the source terminal to the load terminal and a second direction from the load terminal to the source terminal, and outputting a current flow direction signal; a comparator unit for comparing an actual value of the current measurement signal with a threshold criterion, and outputting a trigger signal at a trigger output if a value of the current measurement signal reaches the threshold criterion; and a threshold criterion unit.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: January 23, 2024
    Assignee: EATON INTELLIGENT POWER LIMITED
    Inventor: Wolfgang Hauer
  • Patent number: 11870373
    Abstract: Capacitor balancing of a dual three-level (3L) T-type converter based on silicon carbide (SiC) discrete semiconductors was performed with the converter feeding an open-ends induction motor (OEIM). A model predictive control (MPC) using a two step cost function calculation was developed to balance the DC link capacitors and control the machine torque simultaneously. The number of redundant switching states used was reduced without affecting the operating voltage vectors, which substantially reduced the computational time. A simulation and experimental results are in good agreement.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: January 9, 2024
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Aboubakr Salem, Mohamed Ali Abido, Mohamed Mamdouh
  • Patent number: 11870384
    Abstract: The purpose of the present invention is to provide a speed detection method for maintaining a fine time axis resolution and a power conversion device that uses the method. This power conversion device comprises an inverter for converting DC voltage into AC voltage and supplying the same to a motor, a motor speed calculation unit for calculating the speed of the motor from output pulses obtained from an encoder connected to the motor, and a control unit for receiving the motor speed from the motor speed calculation unit and controlling the inverter. In the power conversion device, the motor speed calculation unit measures the duty cycle of the output pulses, calculates the speed using the half cycles of the output pulses if the duty cycle is within a prescribed range from 50%, and calculates the speed using the full cycles of the output pulses if the duty ratio is outside of the prescribed range from 50%.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: January 9, 2024
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Hiroshi Watanabe, Masataka Sasaki, Masahiro Hiraga, Yusuke Arao, Atsuhiko Nakamura, Hiroyuki Tomita, Kazushige Hotta, Yusaku Onuma