Patents Examined by Keith M Raymond
  • Patent number: 11965950
    Abstract: A method for generating a perfusion weighted image using arterial spin labeling (ASL) with segmented acquisitions includes dividing an anatomical area of interest into a plurality of slices and performing a multi-band (MB) echo planar imaging (EPI) acquisition process using a magnetic resonance imaging (MRI) system to acquire a control image dataset representative of the plurality of slices using a central-to-peripheral or peripheral-to-central slice acquisition order. An ASL preparation process is performed using the MRI system to magnetically label protons in arterial blood water in an area upstream from the anatomical area of interest. Following a post-labeling delay time period, the MB EPI acquisition process is performed to a labeled image dataset corresponding to the slices using the central-to-peripheral or peripheral-to-central slice acquisition order. A perfusion weighted image of the anatomical area is generated by subtracting the labeled image dataset from the control image dataset.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: April 23, 2024
    Assignees: Siemens Healthineers AG, Regents of the University of Minnesota
    Inventors: Xiufeng Li, Gregory J. Metzger, Essa Yacoub, Kamil Ugurbil, Dingxin Wang
  • Patent number: 11955246
    Abstract: A method is provided to model a 3D structure comprising: producing a surface mesh representation of the 3D structure; producing a volume mesh representation of the 3D structure based upon the surface mesh; sorting vertices of the volume mesh into a first sub-list that includes only surface vertices and a second sub-list that includes only internal vertices; applying shading to the surface mesh by accessing only surface vertices in the first sub-list; determining deformation of the volume mesh by accessing both surface vertices in the first sub-list and internal vertices in the second sub-list.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: April 9, 2024
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Pourya Shirazian, Mahdi Azizian
  • Patent number: 11944486
    Abstract: An analysis method and an electronic apparatus for breast image are provided. The method includes the following steps. One or more breast ultrasound images are obtained. The breast ultrasound images are used for forming a three-dimensional (3D) breast model. A volume of interest (VOI) in the breast ultrasound image is obtained by applying a detection model on the 3D breast model. The VOI is compared with a tissue segmentation result. The VOI is determined as a false positive according to a compared result between the VOI and the tissue segmentation result. The compared result includes that the VOI is located at a glandular tissue based on the tissue segmentation result. In response to the VOI being located in the glandular tissue of the tissue segmentation result, the VOI is compared with the lactiferous duct in the 3D breast model.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: April 2, 2024
    Assignee: TAIHAO MEDICAL INC.
    Inventors: Jen-Feng Hsu, Hong-Hao Chen, Rong-Tai Chen, Hsin-Hung Lai, Wei-Han Teng
  • Patent number: 11944497
    Abstract: An ultrasonic blood flow imaging display method and an ultrasonic imaging system. The system comprises: a probe (1); a transmitting circuit (2), configured to excite the probe (1) to transmit an ultrasonic beam to a scanning target; a receiving circuit (4) and a beam forming module (5), configured to receive an echo of the ultrasonic beam to obtain an ultrasonic echo signal; a data processing module (9), configured to obtain, according to the ultrasonic echo signal, blood flow velocity vector information and Doppler blood flow velocity information about a target point in the scanning target and at least part of ultrasonic images of the scanning target, and superposing the ultrasonic images and the Doppler blood flow velocity information to form a Doppler color blood flow graph; and a display (8), configured to contrastively display the blood flow velocity vector information and the Doppler color blood flow graph.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: April 2, 2024
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Yigang Du, Rui Fan, Yong Li
  • Patent number: 11944850
    Abstract: A multi-angular ultrasound device. Multi-angular ablation patterns are achieved by a catheter-based ultrasound transducer having a plurality of transducer zones. A multi-chambered balloon is positioned on the catheter.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: April 2, 2024
    Assignee: Acoustic MedSystems, Inc.
    Inventor: Everette C. Burdette
  • Patent number: 11948230
    Abstract: The present invention describes a new functional biomarker of vascular inflammation and its use in predicting all-cause or cardiac mortality. The invention also provides a method for stratifying patients according to their risk of all-cause or cardiac mortality using data gathered from a computer tomography scans of a blood vessel to determine a specific combination of structural and functional biomarkers of vascular inflammation and disease.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: April 2, 2024
    Assignee: Oxford University Innovation Limited
    Inventors: Charalambos Antoniades, Keith Channon, Evangelos Oikonomou, Stefan Neubauer
  • Patent number: 11937909
    Abstract: A magnetic marker for use in locating tissue for surgery includes a casing and two to five magnetic elements arranged in a row. The two or more magnetic elements are separated from each other by an isolating material. The magnetic marker may be non-bio-absorbable. This means that the magnetic marker is invariable as it does not decay over time. This invariability ensures that on the basis of the signal measured by a magnetometer device a distance between a probe of the magnetometer device and the magnetic marker can be determined.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: March 26, 2024
    Assignee: Sirius Medical Systems B.V.
    Inventors: Theodoor Jacques Marie Ruers, Bram Schermers, Bennie Ten Haken
  • Patent number: 11937951
    Abstract: A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
    Type: Grant
    Filed: January 25, 2023
    Date of Patent: March 26, 2024
    Assignee: The Trustees of Dartmouth College
    Inventors: Kenneth Tichauer, Robert W. Holt, Frederic Leblond, Pablo Valdes, Brian W. Pogue, Keith D. Paulsen, David W. Roberts
  • Patent number: 11925502
    Abstract: Tracked mobile x-ray imaging equipment is used to produce single or stereo long calibrated views of the anatomy of a patient on the operating table. The system estimates the position and orientation of the anatomical planes, virtually places measurement grids over these reference planes, and transforms any radiographic views taking by the x-ray imaging system onto these calibrated planes. The system may apply information about the depth of the anatomy to remove parallax artifacts. This system enables displaying and evaluation of the entire radiographic length of the anatomical planes using a mobile x-ray equipment. It also provides a platform for overlaying the real time x-ray images taken during operation with radiographic images of the patient or schematic of the surgical plan developed before the surgery for quick evaluation of a surgical plan.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: March 12, 2024
    Assignee: Alphatec Spine, Inc.
    Inventor: Shahram Amiri
  • Patent number: 11927660
    Abstract: A method for determining movement of an object to be imaged in a medical imaging method which includes at least one Magnetic Resonance Imaging, wherein the method comprises the following steps determining first coefficients of a mathematical transformation based on first navigator data of the object, wherein the first navigator data are recorded by a magnetic resonance tomograph (100) using a first spherical Lissajous navigator in the k-space with kr<0.2/cm, preferably kr<0.15/cm, and particularly preferably kr<0.1/cm, wherein kr represents the absolute value of the wave vector k.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: March 12, 2024
    Assignee: FORSCHUNGSZENTRUM JÜLICH GMBH
    Inventors: Richard Buschbeck, Nadim Joni Shah
  • Patent number: 11918342
    Abstract: Ingestible devices are disclosed that provide very high localization accuracy for the devices when present in the GI tract of a body. Related systems and methods are also disclosed.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: March 5, 2024
    Assignee: Biora Therapeutics, Inc.
    Inventors: Mitchell Lawrence Jones, Yi Liu, Kate LeeAnn Bechtel, Christopher Loren Wahl
  • Patent number: 11911587
    Abstract: An injection setup kit can include a manifold connector, a first packaging container, and a fluid line. The first packaging container can define a first closed interior volume that includes a patient interface connector having a patient interface inlet, a first patient interface outlet, and a valve configured to selectively permit fluid communication through the patient interface connector. The patient interface inlet can be fluidly connected to the manifold outlet. The fluid line can have a first fluid line end and a second fluid line end. The first fluid line end can be connected to the patient interface inlet within the first closed interior volume. The second fluid line end can extend outside of the first closed interior volume and be connected to a manifold outlet outside of the first closed interior volume.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 27, 2024
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Matthew James Russell Bakken, Spencer Fodness-Bondhus, Blaise D. Porter
  • Patent number: 11903691
    Abstract: A method to automatically align magnetic resonance (MR) scans for diagnostic scan planning includes acquiring a three-dimensional (3D) localizer image of an anatomical object. One or more initial landmarks are identified in the 3D localizer image using a landmarking engine. One or more main axes associated with the anatomical object are identified based on the one or more initial landmarks. The 3D localizer image is registered to a canonical space based on the main axes associated to yield a registered 3D localizer image. The landmarking engine is applied to the registered 3D localizer image to yield one or more updated landmarks. A plurality of reference points for performing a MR scan are computed based on the one or more updated landmarks.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: February 20, 2024
    Assignee: Siemens Healthineers AG
    Inventors: Fitsum Aklilu Reda, Yiqiang Zhan, Martin Harder
  • Patent number: 11904110
    Abstract: A device includes a medical instrument mounting structure; a base; and a gearless longitudinal translation device connected to and enabling longitudinal movement of the medical instrument mounting structure with respect to the base. The gearless longitudinal translation device includes: a first friction wheel having at least a first beveled side surface, and a second friction wheel having at least a second beveled surface; a first linear rod disposed between the first and second friction wheels and in contact with the first and second beveled surfaces; and a control mechanism attached to the first and second friction wheels for rotating the first and second friction wheels. Rotation of the first and second friction wheels causes a longitudinal displacement of the first linear rod with respect to the first and second friction wheels, which in turn causes the medical instrument mounting structure to be longitudinally displaced with respect to the base.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: February 20, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Mika Tapani Ihatsu, Olli Tapio Friman
  • Patent number: 11903766
    Abstract: The current disclosure provides methods and systems for navigating among display panels and graphical elements of a user interface of a medical imaging system via controls of a handheld imaging device. In one embodiment, the current disclosure provides for a method comprising, in response to an operator of the medical imaging system adjusting one or more controls arranged on a control handle of a handheld ultrasound device of the medical imaging system, adjusting a focus of a user interface (UI) of the medical imaging system among a plurality of graphical control elements displayed in the UI; and in response to the operator selecting a graphical control element of the plurality of graphical control elements at a location of the focus of the UI via the one or more controls, executing an action of the medical imaging system associated with the selected graphical control element.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: February 20, 2024
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventor: Birger Loype
  • Patent number: 11903676
    Abstract: An illustrative optical measurement system includes a light source configured to emit light directed at a target, an array of photodetectors configured to detect photons of the light after the light is scattered by the target, and a processing unit. The processing unit is configured to measure a noise level of a photodetector included in the array of photodetectors and determine that the noise level meets a predetermined threshold. The processing unit is further configured to prevent, based on the determining that the noise level meets the predetermined threshold, an output of the photodetector from being used in generating a histogram based on a temporal distribution of photons detected by the array of photodetectors.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: February 20, 2024
    Assignee: HI LLC
    Inventors: Sebastian Sorgenfrei, Ryan Field, Bruno Do Valle, Isai Olvera, Jacob Dahle, Husam Katnani
  • Patent number: 11899089
    Abstract: A phantom calibration body (110) for a method for determining at least one quantitative diffusion parameter extracted for characterization of a tissue being suspicious to a tumorous modification in magnetic resonance imaging is disclosed, wherein the phantom calibration body (110) is designed for being characterized during characterization of the tissue by the magnetic resonance imaging. Herein, the phantom calibration body (110) comprises a first compartment (112) having a first cross-section, the first compartment (112) being filled with a first solution comprising a calibration substance having a first concentration; and a second compartment (114) having a second cross-section, the second cross-section having at least two different partitions with differing diameters, wherein the second compartment (114) is filled with a second solution comprising the calibration substance having a second concentration, the second concentration differing from the first concentration.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: February 13, 2024
    Assignee: Deutsches Krebsforschungszentrum
    Inventors: Sebastian Bickelhaupt, Tristan Anselm Kuder
  • Patent number: 11896352
    Abstract: A system and method for promoting and safeguarding the wellbeing of patients in relation to a fluid injection may obtain patient data; determine, based on the patient data, an initial risk prediction for a patient for a fluid injection to be administered to the patient, the initial risk prediction including a probability that the patient experiences at least one adverse event in response to the fluid injection; provide, to a user device, before the fluid injection is administered to the patient, the initial risk prediction; determine, after the fluid injection is started, sensor data associated with the patient; determine, based on the sensor data determined after the fluid injection is started, a current risk prediction including a probability that the patient experiences the at least one adverse event in response to the fluid injection; and provide, to the user device, the current risk prediction.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: February 13, 2024
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Johannes Anton Thuering, Arthur Uber, III, David Griffiths, Michael McDermott, Charles Lang, Linda Van Roosmalen, Barry Skirble, Adam Czibur, Daniel Moore, Vincenzo Caruso, Brandon Clarke
  • Patent number: 11896340
    Abstract: A robot navigation system includes a handheld robot, a spatial information measuring device, a computing module and a display. The hand-held robot has a body, a tool and a movable connection mechanism. The movable connection mechanism is connected between the body and the tool, so that the tool can move relative to the body. The spatial information measuring device is configured to track the body, the tool and a target. The computing module is connected to the spatial information measuring device to obtain a plurality of relative positions between the body, the tool and the movable connection mechanism with respect to the target. The computing module calculates a guiding region according to the relative positions and mechanical parameters of the handheld robot. The display is configured to display the guiding region and the handheld robot based on the coordinate of the target.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: February 13, 2024
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Ping-Lang Yen, Tsung-Han Ho
  • Patent number: 11877887
    Abstract: A controller for determining shape of an interventional device includes a memory that stores instructions, and a processor that executes the instructions. When executed by the processor, the instructions cause the controller to execute a process that includes controlling an imaging probe to emit at least one tracking beam to an interventional medical device over a period of time comprising multiple different points of time. The process also includes determining a shape of the interventional medical device, based on a response to the tracking beams received over the period of time from a first sensor that moves along the interventional medical device during the period of time relative to a fixed location on the interventional medical device for the period of time.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: January 23, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Alvin Chen, Ramon Quido Erkamp, Shyam Bharat, Kunal Vaidya, Alyssa Torjesen, Molly Lara Flexman, Ameet Kumar Jain