Patents Examined by Keling Zhang
  • Patent number: 11524277
    Abstract: Provided is a catalyst for manufacturing multi-wall carbon nanotubes, the catalyst including metal components according to <Equation> Ma:Mb=x:y, and having a hollow structure with a thickness of 0.5-10 ?m. In the above equation, Ma represents at least two metals selected from Fe, Ni, Co, Mn, Cr, Mo, V, W, Sn, and Cu; Mb represents at least one metal selected from Mg, Al, Si, and Zr; x and y each represent the molar ratio of Ma and Mb; and x+y=10, 2.0?x?7.5, and 2.5?y?8.0.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: December 13, 2022
    Assignee: KOREA KUMHO PETROCHEMICAL CO., LTD.
    Inventors: Sang Hyo Ryu, Hyun Kyung Sung, Chung Heon Jeong, Dong Hwan Kim
  • Patent number: 11524279
    Abstract: A MXene support for a noble metal that forms a catalyst having active sites comprising single metal-layer nanostructures. The catalyst is stable under conditions for methane conversion to higher hydrocarbons and provides reduced coke formation. The results show a supported metal catalyst using the MXene where Pt atoms form one or more layers of atoms on the surface of the Mo2TiC2Tx support after it is reduced at 750° C. The catalyst shows high selectivity for C2-hydrocarbons with reduced coke formation, which can cost effectively convert methane into other valuable products.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: December 13, 2022
    Assignees: Iowa State University Research Foundation, Inc., Purdue Research Foundation
    Inventors: Zhe Li, Yue Wu, Arvind Varma, Yang Xiao
  • Patent number: 11522200
    Abstract: The present disclosure is a method for manufacturing a catalyst for a fuel cell using the blood of slaughtered livestock. The method for manufacturing a catalyst for a fuel cell using the blood of slaughtered livestock of the present disclosure allows preparation of a catalyst for a fuel cell exhibiting high redox reaction activity and very superior durability as compared to a commercially available platinum catalyst through a very simple process of purification of the blood of slaughtered livestock and hydrothermal synthesis. In addition, the method is very economical in that a catalyst is prepared using the pure blood of livestock only without an artificial additive, waste disposal cost can be reduced by recycling the blood of livestock and a high-performance catalyst capable of replacing the expensive platinum catalyst can be prepared.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 6, 2022
    Assignee: Korea Institute of Science and Technology
    Inventors: Sung Jong Yoo, Hee-Young Park, So Young Lee, Hyun Seo Park, Jin Young Kim, Jong Hyun Jang, Hyoung-Juhn Kim, Pil Kim, Yeonsun Sohn, Jiho Lee
  • Patent number: 11517884
    Abstract: A catalyst that includes heterogeneous metal carbide nanomaterials and a novel preparation method to synthesize the metal carbide nanomaterials under relatively mild conditions to form an encapsulated transition metal and/or transition metal carbide nanoclusters in a support and/or binder. The catalyst may include confined platinum carbide nanoclusters. The preparation may include the treatment of encapsulated platinum nanoclusters with ethane at elevated temperatures. The catalysts may be used for catalytic hydrocarbon conversions, which include but are not limited to, ethane aromatization, and for selective hydrogenation, with negligible green oil production.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: December 6, 2022
    Assignees: CHINA ENERGY INVESTMENT CORPORATION LIMITED, NATIONAL INSTITUTE OF CLEAN-AND-LOW-CARBON ENERGY
    Inventors: Junjun Shan, Hui Wang, Lisa Nguyen, Joshua Miles, Jihong Cheng
  • Patent number: 11479678
    Abstract: A reflective paint's liquid mixture includes 42.4-71.3 weight percent of a liquid solvent, 14.4-28.3 weight percent of a binder fully dissolved in the liquid solvent, and 13.8-29.3 weight percent of light scattering particles that are insoluble in the liquid solvent and are of a size ranging from 100 nanometers to 200 nanometers. The binder is selected from potassium bromide, sodium chloride, potassium chloride, sodium bromide, cesium chloride, and rubidium chloride. The light scattering particles are selected from hafnium oxide and yttrium oxide. The reflective paint is particularly useful as a surface coating for a variety of structures that must support cryogenic temperatures. It can be used in any application to act as a broadband reflector of the Sun's radiation in the wavelength band from approximately 0.21 microns to 9 microns and beyond.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: October 25, 2022
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Tracy L. Gibson, Robert C. Youngquist
  • Patent number: 11471860
    Abstract: A composition consisting essentially of a perovskite crystalline structure includes ions of a first metal M1 which occupies an A-site of the perovskite crystalline structure and ions of a second metal M2 which occupies a B-site of the perovskite crystalline structure. M2 has two oxidation states capable of forming a redox couple suitable for reversibly catalyzing an oxygen reduction reaction (ORR) and an oxygen evolution reaction (OER). The composition also includes ions of a third metal M3 at least a portion of which substitutes for M1 in the A-site of the perovskite crystalline structure, and at least a portion of which optionally also substitutes for M2 in the B-site of the perovskite crystalline structure. At least some of the ions of M3 have a different oxidation state to the ions of M1. The composition also includes atoms of an element X, which is a chalcogen.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: October 18, 2022
    Assignee: Ilika Technologies Limited
    Inventors: Brian Elliott Hayden, Christopher Vian, Kieren Bradley, Hugo Jungius, Kyriakos Giagloglou
  • Patent number: 11439998
    Abstract: Methods of treating hydroconversion catalysts used for cracking of hydrocarbons are described. A method can include mixing an inactive hydroconversion catalyst with a solid hydrocarbon containing material having a melting point of 50° C. or greater. The inactive hydroconversion catalyst/solid hydrocarbon containing material mixture can be contacted with a gaseous stream that includes hydrogen (H2) and a sulfur-containing compound under conditions sufficient to sulfide the catalyst and carbonize at least a portion of the hydrocarbon containing material on the sulfided catalyst to obtain a treated sulfided hydroconversion catalyst.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: September 13, 2022
    Assignee: CHEM32, LLC
    Inventors: Soren Marklund, Douglas G. Wene
  • Patent number: 11427524
    Abstract: A process for dehydrating methanol to dimethyl ether product in the presence of a solid Brønsted acid catalyst which is an aluminosilicate zeolite or a heteropolyacid and a promoter which is (i) a ketone of formula R1COR2 (Formula I) in which R1 and R2 are identical or different and are each a C1-C11 alkyl group and furthermore R1 and R2 together with the carbonyl carbon atom to which they are bonded may form a cyclic ketone; or (ii) a ketal derivative of a ketone of Formula I; and the molar ratio of promoter to methanol is maintained at 0.5 or less.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: August 30, 2022
    Assignee: BP P.L.C.
    Inventors: Benjamin James Dennis-Smither, John Glenn Sunley
  • Patent number: 11420188
    Abstract: A method of synthesizing a smart paper transformer is provided. The method comprises combining paper with HAuCl4 and stirring together in an aqueous solution to form a pulp. The pulp is treated with NaBH4 aqueous solution. The treated pulp is then washed and centrifuged with water a number of times to form a gold nanosponge (AuNS) catalyst pulp.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: August 23, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: XiuJun Li, Qijie Jin
  • Patent number: 11383226
    Abstract: A catalyst for decomposing an organic substance, the catalyst having a body which has a plurality of pores and the body contains a perovskite-type composite oxide represented by AxByMzOw, where the A contains at least one selected from Ba and Sr, the B contains Zr, the M is at least one selected from Mn, Co, Ni, and Fe, 1.001?x?1.1, 0.05?z?0.2, y+z=1, and w is a positive value that satisfies electrical neutrality. The average pore diameter of the plurality of pores is 49 nm to 260 nm and the pore volume of each of the plurality of pores is 0.08 cm3/g to 0.37 cm3/g.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: July 12, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kentaro Ishihara, Nario Sugahara, Satoshi Kuretake, Naoya Mori, Hideto Sato
  • Patent number: 11260382
    Abstract: The invention discloses a core-shell structured catalyst comprising a core covered with a shell. The core is made of hematite, tourmaline, germanium, maifanite or kaolin. The invention also provides a method for preparing the catalyst including mixing raw materials of the core with water to form seed-balls with a particle size of 2-4 mm; mixing the seed-balls with raw materials of the shell and water, such that the seed-balls are covered with the raw materials of the shell to form pellets with a particle size of 3-5 mm; processing the pellets at 60-90° C. and then calcining to active the pellets at 450-550° C. to obtain a core-shell structured catalyst. The invention further discloses use of the core-shell structured catalyst in the ozone oxidation reaction. In the invention, a core-shell structured catalyst with good morphology and catalytic performance is prepared, and the production cost of the catalyst is reduced.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: March 1, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Duo Wu, Xingmin Gao, Zhangxiong Wu
  • Patent number: 11198112
    Abstract: The invention discloses a dinuclear rhodium complex-doped platinum/hollow mesoporous silica sphere composite material, and a preparation method and an application thereof. The preparation method comprises the following steps: preparing hollow mesoporous silica by a selective etching technology, uniformly distributed a precious metal platinum in the channels of the hollow mesoporous silica by using simple impregnation, and mixing the obtained catalyst with dinuclear rhodium complex adsorbed silica gel to obtain the composite material integrating a chromogenic probe with the catalyst.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: December 14, 2021
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Jianmei Lu, Dongyun Chen
  • Patent number: 11192795
    Abstract: High surface area 3D mesoporous carbon nanocomposites can be derived from Zn dust and PET bottle mixed waste with a high surface area. Simultaneous transformation of Zn metal into ZnO nanoparticles and PET bottle waste to porous carbon materials can be achieved by thermal treatment at preferably 600 to 800° C., and reaction times of from 15 to 60 minutes, after optionally de-aerating the reaction mixtures with N2 gas. The waste-based carbon materials can have surface areas of 650 to 725 m2/g, e.g., 684.5 m2/g and pore size distributions of 12 to 18 nm. The carbon materials may have 3D porous dense layers with a gradient pore structure, which may have enhanced photocatalytic performance for degrading, e.g., organic dyes, such as methylene blue and malachite green. Sustainable methods make ZnO-mesoporous carbon materials from waste for applications including photocatalysis, upcycling mixed waste materials.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: December 7, 2021
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Hanan Hussein Amin Mohamed, Aamerah Abdulwahab Alsanea, Nuhad Abdullah Alomair, Sultan Akhtar