Patents Examined by Kiho Kim
  • Patent number: 10295461
    Abstract: There are provided a terahertz wave spectral dispersing unit 13 for spectrally dispersing a terahertz wave to be generated from a terahertz wave generating semiconductor 12 into two waves, a terahertz wave focusing unit 14 for focusing a terahertz wave transmitted through a sample liquid film 101 and a terahertz wave transmitted through a reference liquid film 102, and a terahertz wave detecting semiconductor 15 for detecting the focused terahertz wave, and it is possible to detect the terahertz wave transmitted through the sample liquid film 101 and the terahertz wave transmitted through the reference liquid film 102 in an interference state, thereby offsetting a noise made by a stripe-shaped wave generated on the sample liquid film 101 and a noise made by a stripe-shaped wave generated on the reference liquid film 102.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: May 21, 2019
    Assignee: FEMTO DEPLOYMENTS INC.
    Inventors: Akira Watanabe, Takeji Ueda, Tadashi Okuno
  • Patent number: 10295462
    Abstract: A sensor system including a spectrometer with a light source having a plurality of selectable wavelengths, a controller for controlling the sensor system, for selecting wavelengths of illumination light produced by the light source, and for controlling the light source to illuminate a spatial location, a photodetector aligned to detect light received from the spatial location, a blind demixer coupled to the photodetector for separating received spectra in the detected light into a set of sample spectra associated with different demixed or partially demixed chemical components, a memory having a plurality of stored reference spectra, a non-blind demixer coupled to the blind demixer and to the memory for non-blind demixing of the sample spectra using the reference spectra, and a classifier coupled to the non-blind demixer for classifying the set of demixed sample spectra into chemical components using the reference spectra.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: May 21, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Daniel Yap, Yuri Owechko, Richard M. Kremer, Shankar R. Rao
  • Patent number: 10295469
    Abstract: The invention provides a temporal focusing-based multiphoton excitation fluorescence microscopy system capable of tunable-wavelength excitation and an excitation wavelength selection module thereof. The temporal focusing-based multiphoton excitation fluorescence microscopy system comprises: an excitation light generating module for generating excitation light; an excitation wavelength selection module for generating reflected light having a predetermined output angle in accordance with the wavelength of the excitation light and generating detecting excitation light through a diffraction unit; and a fluorescent microscope.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: May 21, 2019
    Assignee: NATIONAL CENTRAL UNIVERSITY
    Inventors: Fan-Ching Chien, Chi-Hsiang Lien
  • Patent number: 10288546
    Abstract: In one aspect, the present teachings provide a system for performing cytometry that can be operated in three operational modes. In one operational mode, a fluorescence image of a sample is obtained by exciting one or more fluorophore(s) present in the sample by an excitation beam formed as a superposition of a top-hat-shaped beam with a plurality of beams that are radiofrequency shifted relative to one another. In another operational mode, a sample can be illuminated successively over a time interval by a laser beam at a plurality of excitation frequencies in a scanning fashion. The fluorescence emission from the sample can be detected and analyzed, e.g., to generate a fluorescence image of the sample. In yet another operational mode, the system can be operated to illuminate a plurality of locations of a sample concurrently by a single excitation frequency, which can be generated, e.g., by shifting the central frequency of a laser beam by a radiofrequency.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: May 14, 2019
    Assignee: OMEGA BIOSYSTEMS INCORPORATED
    Inventors: Eric D. Diebold, Keegan Owsley, Jonathan Lin
  • Patent number: 10288863
    Abstract: The invention provides an open-stage near-TIRF microscope in which all of the optical components are positioned underneath the sample, allowing for physical access to, and control over the environment of, the sample. The microscope can be used to image cells expressing fluorescent voltage indicators. Since the TIRF components do not interfere with the sample, living cells can be studied using a microscope of the invention. Where a sample includes electrically active cells expressing fluorescent voltage indicators, the microscope can be used to view voltage changes in, and thus the electrical activity of, those cells.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: May 14, 2019
    Assignee: Q-STATE BIOSCIENCES, INC.
    Inventors: Christopher Werley, Steven Wasserman, Adam Cohen
  • Patent number: 10288484
    Abstract: A metrology system is used for measuring a spectral feature of a pulsed light beam. The metrology system includes: a beam homogenizer in the path of the pulsed light beam, the beam homogenizer having an array of wavefront modification cells, with each cell having a surface area that matches a size of at least one of the spatial modes of the light beam; an optical frequency separation apparatus in the path of the pulsed light beam exiting the beam homogenizer, wherein the optical frequency separation apparatus is configured to interact with the pulsed light beam and to output a plurality of spatial components that correspond to the spectral components of the pulsed light beam; and at least one sensor that receives and senses the output spatial components.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: May 14, 2019
    Assignee: Cymer, LLC
    Inventors: Zhongquan Zhao, Brian Edward King, Thomas Patrick Duffey
  • Patent number: 10285638
    Abstract: A method of determining whether a patient has taken a dose of medication. The method includes including a first-pass tracer substance with at least one dose of the medication. The first-pass tracer substance is detectable in a body of the patient using a sensor. In addition, the first-pass tracer substance has a short half-life at the site of detection in the body. Further, processing circuitry determines that the patient has taken the dose of medication when the first-pass tracer substance is detected using the sensor at a time after a scheduled medication administration.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: May 14, 2019
    Assignee: CONTINUOUS PRECISION MEDICINE
    Inventor: Barry L. Jenkins
  • Patent number: 10281413
    Abstract: Examples of nano-level evaluation of kerogen-rich reservoir rock are described. A micro-scale beam is formed from kerogen-rich reservoir rock. The beam has reservoir rock and kerogen, which has polymeric properties. A maximum dimension of the micro-scale beam is at most 1000 micrometers. A mechanical experiment that includes a tension test or a compression test is performed on the micro-scale beam. The mechanical experiment is imaged using a scanning electron microscope (SEM). A material parameter of the kerogen in the micro-scale beam is determined based on results of the mechanical experiment and images obtained responsive to the imaging. The material parameter includes a behavior of the kerogen in response to the mechanical experiment. The behavior of the kerogen can be used to determine, among other things, the energy required to break kerogen in a kerogen-rich shale to improve hydraulic fracturing efficiency.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: May 7, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Katherine Leigh Hull, Younane N. Abousleiman, Sebastian Csutak
  • Patent number: 10281599
    Abstract: Provided are an X-ray apparatus and a method of operating the same. An embodiment provides an X-ray apparatus that displays position information regarding a plurality of X-ray detectors and a method of operating the same. The X-ray apparatus includes a plurality of X-ray detectors, a plurality of mounts to which the plurality of X-ray detectors are mounted, and a work station. The plurality of X-ray detectors include light emitting elements that emit light of colors different from one another, the plurality of mounts include a plurality of light detectors that sense colors of light emitted by the light emitting elements and are disposed apart from one another, respectively. The workstation includes a controller that obtains positional information regarding the plurality of X-ray detectors based on colors of light sensed by the light detectors respectively included in the plurality of mounts.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: May 7, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Byoung-hoon Koh
  • Patent number: 10278656
    Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: May 7, 2019
    Assignee: IMAGE INSIGHT, INC.
    Inventors: Eric P. Rubenstein, Peter R. Solomon, Gordon A. Drukier, Marek A. Wojtowicz, Joseph E. Cosgrove, Michael A. Serio, James R. Markham, Kenneth W. Wang, William M. Pramenko
  • Patent number: 10274612
    Abstract: A radiation imaging apparatus comprising a pixel array in which a plurality of pixels are arrayed and a processor configured to generate a radiation image based on radio-photons which have entered the pixel array, wherein the processor performs a first process of obtaining a value of a signal from each of the plurality of pixels as a pixel value, a second process of selecting at least one of the plurality of pixels as a reference pixel, and a third process of specifying a detection area of a radio-photon in the pixel array by sequentially referring to pixel values of pixels around the reference pixel as a starting point.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: April 30, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yoshiaki Ishii, Atsushi Iwashita, Sho Sato, Kosuke Terui
  • Patent number: 10267724
    Abstract: The invention relates to a device (1) and a method for the optical stimulation of an optically activatable biological sample (3), comprising at least one light source (13; 13?, 13?), which emits light of at least one predetermined wavelength that impinges directly or indirectly on the sample (3). The invention is characterized in that: the at least one light source (13; 13?, 13?) is thermally coupled to a hollow channel section (4); the hollow channel section (4) is part of a fluid circuit through which fluid flows; a temperature-control unit (12) and a conveying pump are arranged along the fluid circuit; and the hollow channel section (4) has at least one limiting wall (5) onto which the optically activatable biological samples (3) are thermally coupled in a direct or indirect manner.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: April 23, 2019
    Assignee: Albert-Ludwigs-Universität Freiburg
    Inventors: Kathrin Brenker, Jianying Yang, Michael Reth
  • Patent number: 10267686
    Abstract: Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 23, 2019
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 10267684
    Abstract: An apparatus, system, and method to characterize a focal plane array. The apparatus includes a speckle field source to generate and emit a plurality of uniform speckle fields, a diamond-shape aperture, and a pedestal to mount the focal plane array at a predetermined distance from the aperture. The diamond-shape aperture shapes the uniform speckle fields from the speckle field source so that the uniform speckle fields have a desired power spectral density at the focal plane array. The desired power spectral density has recoverable aliased regions out to two times the Nyquist frequency of the focal plane array. The system includes a controller to characterize, by computing a modulation transfer function, the focal plane array based on the desired power spectral density of the uniform speckle fields impinging on the focal plane array.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: April 23, 2019
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Kenneth J. Barnard
  • Patent number: 10258930
    Abstract: A support structure for a membrane comprises a plurality of support members and at least one flange, including: (a) a first set of spoke-like support members that extend generally from at least one flange toward a common hub and that have a distal end joined to at least one flange and a proximal end joined to the common hub; and (b) at least one subsequent set of spoke-like support members that are distributed between circumferentially adjacent pairs of spoke-like support members from the prior sets and that extend generally from at least one flange toward the hub, each having a distal end joined to at least one flange and a proximal end connected to the nearest circumferentially adjacent pair of spoke-like support members from the prior sets via a pair of approximately straight anchoring support members which join together and form an angular joint at or near said proximal end, with the vertex of said angular joint pointing generally away from the hub.
    Type: Grant
    Filed: June 19, 2016
    Date of Patent: April 16, 2019
    Inventors: Mark Larson, Erik Bard, Michael Lines
  • Patent number: 10261200
    Abstract: A device configured to detect particles from a radioactive source can localize the source in two dimension, such as the azimuthal and polar angles of the source. Embodiments of the device may comprise a hollow cylindrical or tubular array of “side” detector panels, plus a “central” detector positioned within the array, with no shield or collimator. The various side detector counting rates can indicate the azimuthal angle of the source, while the polar angle can be determined by a ratio of the side detector data divided by the central detector data. Embodiments of the directional detector device can provide greatly improved inspections, thereby detecting clandestine nuclear and radiological weapons, or other sources that are to be localized, rapidly and precisely.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: April 16, 2019
    Inventor: David Edward Newman
  • Patent number: 10252084
    Abstract: A device and method to be used in the calibration process for a linear accelerator (LINAC). The optical water surface detector device allows the accurate determine of the height of the water surface in a tank. The device housing includes a light source and a light receiver. The housing can also include a circuit board. The device is mounted on an arm attached to a vertical position mechanism mounted within the tank. The light source within the device is controlled by a main control unit which also receives signals from the receiver and determines the amount of light striking the receiver. The control unit also controls the position of the vertical position mechanism and thus the arm on which the device is mounted.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: April 9, 2019
    Assignee: AKTINA CORP.
    Inventor: Nicholas G. Zacharopoulos
  • Patent number: 10254169
    Abstract: The present invention provides an optical detector device, including: a metal absorber layer; and a dielectric cover layer coupled to the metal absorber layer, wherein the dielectric cover layer includes one or more antireflective structured surfaces. The optical detector device further includes one or more of a passive substrate layer and an active thermoelectric element layer coupled to the metal absorber layer opposite the dielectric cover layer. The one or more antireflective structured surfaces each utilize a random pattern.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: April 9, 2019
    Assignees: The Government of the United States of America, as represented by the Secretary of the Navy, The University of North Carolina at Charlotte
    Inventors: Menelaos K. Poutous, Ishwar D. Aggarwal, Jasbinder S. Sanghera, Lynda E. Busse, Brandon L. Shaw
  • Patent number: 10254421
    Abstract: A detector array for a radiation system includes a radiation detection sub-assembly, a routing sub-assembly, and an electronics sub-assembly. The routing sub-assembly is disposed between the radiation detection sub-assembly and the electronics sub-assembly and includes one or more layers of shielding material. For example, the routing sub-assembly may include a printed circuit board having embedded therein a shielding material configured to shield the electronics sub-assembly from at least some radiation. In some embodiments, the shielding material defines at least one opening through which a conductive element(s) passes to deliver signals between the radiation detection sub-assembly and the electronics sub-assembly.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: April 9, 2019
    Assignee: Analogic Corporation
    Inventors: Randy Luhta, Lane Marsden, Ruvin Deych, Jeffrey Greenwald, Martin Choquette, Christopher Tibbetts
  • Patent number: 10254218
    Abstract: A method for quantifying the amount of ammonium bicarbonate in a solid sample of ammonium carbamate is provided. The method includes measuring the FT-IR spectrum of the sample, calculating the IR band maximum for a first band that is common to ammonium carbamate and ammonium bicarbonate and for a second band that is unique to ammonium carbamate, calculating a ratio of the maximum of the second band to the maximum of the first band, and calculating the concentration of ammonium bicarbonate in the sample from a calibration curve.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: April 9, 2019
    Assignee: A.Y. LABORATORIES LTD.
    Inventors: Ayala Barak, Mari Nuopponen