Patents Examined by Kimberly D. Nguyen
  • Patent number: 7812396
    Abstract: A semiconductor device having a first semiconductor region and second semiconductor region including impurities formed on an insulating layer formed on a semiconductor substrate, an insulator formed between the first semiconductor region and the second semiconductor region, a first impurity diffusion control film formed on the first semiconductor region and a second impurity diffusion control film formed on the second semiconductor region, a channel layer formed on the first impurity diffusion control film and second impurity diffusion film to cross at right angles with a direction where the first semiconductor region and the second semiconductor region are extended, a gate insulating film formed on the channel layer and a gate electrode formed on the gate insulating layer.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: October 12, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Hideaki Aochi, Ryota Katsumata, Masaru Kidoh
  • Patent number: 7804142
    Abstract: For forming a gate electrode, a conductive film with low resistance including Al or a material containing Al as its main component and a conductive film with low contact resistance for preventing diffusion of Al into a semiconductor layer are laminated, and the gate electrode is fabricated by using an apparatus which is capable of performing etching treatment at high speed.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: September 28, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hideomi Suzawa, Koji Ono, Yoshihiro Kusuyama
  • Patent number: 7777216
    Abstract: A method of fabricating a semiconductor device having high output power and excellent long-term reliability by preventing thermal adverse influence exerted at the time of window structure formation is provided. The method comprises a 1st step of forming predetermined semiconductor layers 2 to 9 containing at least an active layer 4b consisting of a quantum well active layer on a semiconductor substrate 1; a 2nd step of forming a first dielectric film 10 on a first portion of the surface of the semiconductor layers 2 to 9; a 3rd step of forming a second dielectric film 12 made of the same material as that of the first dielectric film 10 and having a density lower than that of the first dielectric film 10 on a second portion of the surface of the semiconductor layers 2 to 9; and a 4th step of heat-treating a multilayer body containing the semiconductor layers 2 to 9, the first dielectric film 10, and the second dielectric film 12 to disorder the quantum well layer below the second dielectric film 12.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: August 17, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventor: Yumi Yamada
  • Patent number: 7772669
    Abstract: Second diffusion layers to be guard rings of a second conductivity type are formed on the major surface of a semiconductor substrate of a first conductivity type in a guard ring region. An insulating film is formed on these second diffusion layers. The semiconductor device has a structure wherein a conductive film is formed on the insulating film between adjacent electrodes among a first surface electrode, second surface electrodes, and a third surface electrode.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: August 10, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shigeo Tooi, Tetsujiro Tsunoda
  • Patent number: 7772652
    Abstract: A semiconductor component arrangement is disclosed. In one embodiment, the semiconductor component arrangement includes a power transistor formed within a semiconductor layer in at least one first region and further semiconductor components formed at least in a second region, an effective thickness of the semiconductor layer being smaller in the first region than in the second region.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: August 10, 2010
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Ralph Stübner
  • Patent number: 7768092
    Abstract: A semiconductor device comprises a first layer (1) of a wide band gap semiconductor material doped according to a first conductivity type and a second layer (3) on top thereof designed to form a junction blocking current in the reverse biased state of the device at the interface to said first layer. The device comprises extension means for extending a termination of the junction laterally with respect to the lateral border (6) of the second layer. This extension means comprises a plurality of rings (16-21) in juxtaposition laterally surrounding said junction (15) and being arranged as seen in the lateral direction away from said junction alternatively a ring (16-18) of a semiconductor material of a second conductivity type opposite to that of said first layer and a ring (19-21) of a semi-insulating material.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: August 3, 2010
    Assignee: Cree Sweden AB
    Inventors: Christopher Harris, Cem Basceri
  • Patent number: 7763880
    Abstract: A multi-terminal electrically actuated switch comprises a source electrode, a drain electrode, and an active region physically connected to both electrodes. The active region comprises at least one primary active region comprising at least one material that can be doped or undoped to change its electrical conductivity, and a secondary active region comprising at least one material for providing a source/sink of ionic species that act as dopants for the primary active region(s). A gate electrode is physically connected to the source/sink region. Methods of operating the switch are also provided.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: July 27, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: R. Stanley Williams
  • Patent number: 7763961
    Abstract: A hybrid stacking package system is provided including providing a board-on-chip substrate, having an opening, attaching a first integrated circuit on the board-on-chip substrate, attaching bond wires, between the first integrated circuit and the board-on-chip substrate, through the opening, and mounting a second integrated circuit over the bond wires.
    Type: Grant
    Filed: April 1, 2006
    Date of Patent: July 27, 2010
    Assignee: STATS ChipPAC Ltd.
    Inventors: Seung Wook Park, Jong Wook Ju
  • Patent number: 7763922
    Abstract: A capacitor of a semiconductor memory of the present invention includes: a lower electrode which covers the surface of a storage node hole from the bottom to at least one of the sidewalls up to a level lower than the top surface of a second interlayer insulating film; a capacitive insulating film which covers the lower electrode; and an upper electrode which covers the capacitive insulating film.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: July 27, 2010
    Assignee: Panasonic Corporation
    Inventors: Hideyuki Arai, Takashi Nakabayashi, Takashi Ohtsuka
  • Patent number: 7759235
    Abstract: Methods for manufacturing semiconductor devices are disclosed. In a preferred embodiment, a method of processing a semiconductor device includes providing a workpiece, the workpiece comprising a material layer to be patterned disposed thereon. A hard mask is formed over the material layer. A first pattern is formed in the hard mask and an upper portion of the material layer using a first etch process. A second pattern is formed in the hard mask and the upper portion of the material layer using a second etch process, the second pattern being different than the first pattern. The first pattern and the second pattern are formed in a lower portion of the material layer using a third etch process and using the hard mask as a mask.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: July 20, 2010
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Haoren Zhuang, Helen Wang, Len Yuan Tsou, Scott D. Halle
  • Patent number: 7759715
    Abstract: Some embodiments include memory cells that contain a dynamic random access memory (DRAM) element and a nonvolatile memory (NVM) element. The DRAM element contains two types of DRAM nanoparticles that differ in work function. The NVM contains two types of NVM nanoparticles that differ in trapping depth. The NVM nanoparticles may be in vertically displaced charge-trapping planes. The memory cell contains a tunnel dielectric, and one of the charge-trapping planes of the NVM may be further from the tunnel dielectric than the other. The NVM charge-trapping plane that is further from the tunnel dielectric may contain larger NVM nanoparticles than the other NVM charge-trapping plane. The DRAM element may contain a single charge-trapping plane that has both types of DRAM nanoparticles therein. The memory cells may be incorporated into electronic systems.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: July 20, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7737460
    Abstract: A white LED includes an LED chip formed on one main surface of a sapphire substrate, the LED chip being formed in a semiconductor stack structure including a light emitting layer and emitting light of a predetermined wavelength, a light extracting film applied on the other main surface of the substrate, the light extracting film being formed of a material having a refractive index within a range of ±5% of a refractive index of the substrate and a surface of the light extracting film that is located on an opposite side to the substrate being processed into a recess and projection shape, and a phosphor member provided on an opposite side of the substrate with respect to the light extracting film, and generating white light as light is incident thereon.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: June 15, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Fujimoto, Koji Asakawa
  • Patent number: 7732322
    Abstract: In a first aspect, a first method of manufacturing a dielectric material with a reduced dielectric constant is provided. The first method includes the steps of (1) forming a dielectric material layer including a trench on a substrate; and (2) forming a cladding region in the dielectric material layer by forming a plurality of air gaps in the dielectric material layer along at least one of a sidewall and a bottom of the trench so as to reduce an effective dielectric constant of the dielectric material. Numerous other aspects are provided.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: June 8, 2010
    Assignee: International Business Machines Corporation
    Inventors: Louis Lu-Chen Hsu, Jack Allan Mandelman, Chih-Chao Yang
  • Patent number: 7719089
    Abstract: A semiconductor device is provided that includes a semiconductor substrate, an n-channel MOSFET formed on the substrate and a p-channel MOSFET formed on the substrate. A first layer is formed to cover the n-channel MOSFET, wherein the first layer has a first flexure-induced stress. A second layer is formed to cover the p-channel MOSFET, wherein the second layer has a second flexure-induced stress.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: May 18, 2010
    Assignees: Sony Corporation, Sony Electronics Inc.
    Inventor: Koichi Matsumoto
  • Patent number: 7718528
    Abstract: A semiconductor process technique to help reduce semiconductor process effects, such as undesired line edge roughness, insufficient lithographical resolution, and limited depth of focus problems associated with the removal of a photoresist layer. More particularly, embodiments of the invention use a photoacid generator (PAG) material in conjunction with a sacrificial light absorbing material (SLAM) to help reduce these and other undesired effects associated with the removal of photoresist in a semiconductor manufacturing process. Furthermore, embodiments of the invention allow a PAG to be applied in a semiconductor manufacturing process in an efficient manner, requiring fewer processing operations than typical prior art techniques.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: May 18, 2010
    Assignee: Intel Corporation
    Inventors: Robert P. Meagley, Heidi B. Cao, Kevin P. O'Brien
  • Patent number: 7696083
    Abstract: A multi-layer device is provided for connecting to an electrical unit enclosed within the multi-layer device. A first wafer has a first outer terminal and a second outer terminal with etch pits. A first insulator has a first surface bonded to the first wafer and a first inner terminal located on an opposing second surface. A second wafer has a first surface bonded to the second surface of the first insulating layer and includes a pillar electrically connected to the first wafer. A second insulator has a first surface bonded to a second surface of the second wafer and a second inner terminal located on the first surface of the second insulator. The first outer terminal is electrically connected to the first inner terminal, and the second outer terminal is electrically connected to the second inner terminal. The first and second outer terminals are adapted for connecting to an electrical unit.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: April 13, 2010
    Assignee: Endeoco Corporation
    Inventors: Tom Kwa, Linh Le, Nina Tikhomirova
  • Patent number: 7691708
    Abstract: A MOSgated trench device has a reduced on resistance by forming a less than about a 13 nm thick strained SiGe layer on the silicon surface of the trenches and forming a thin (30 nm or less) layer of epitaxially deposited silicon on the SiGe layer which epi layer is converted to a gate oxide layer. The conduction channel formed by the SiGe layer is permanently strained to increase its mobility particularly hole mobility.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: April 6, 2010
    Assignee: International Rectifier Corporation
    Inventors: David Paul Jones, Robert P. Haase
  • Patent number: 7687367
    Abstract: On the principal surface of a silicon substrate, a side spacer made of silicon nitride is formed on the side wall of a lamination including a silicon oxide film, a silicon nitride film and a silicon oxide film. Thereafter, a channel stopper ion doped region is formed by implanting impurity ions by using as a mask the lamination, side spacer and resist layer. After the resist layer and side spacer are removed, a field oxide film is formed through selective oxidation using the lamination as a mask, and a channel stopper region corresponding to the ion doped region is formed. After the lamination is removed, a circuit device such as a MOS type transistor is formed in each device opening of the field oxide film.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: March 30, 2010
    Assignee: Yamaha Corporation
    Inventors: Syuusei Takami, Hiroaki Fukami
  • Patent number: 7683453
    Abstract: All low-temperature processes are used to fabricate a variety of semiconductor devices in a substrate the does not include an epitaxial layer. The devices include a non-isolated lateral DMOS, a non-isolated extended drain or drifted MOS device, a lateral trench DMOS, an isolated lateral DMOS, JFET and depletion-mode devices, and P-N diode clamps and rectifiers and junction terminations. Since the processes eliminate the need for high temperature processing and employ “as-implanted” dopant profiles, they constitute a modular architecture which allows devices to be added or omitted to the IC without the necessity of altering the processes used to produce the remaining devices.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: March 23, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Richard K. Williams, Donald Ray Disney
  • Patent number: 7679585
    Abstract: In case the size of the transistor is enlarged, power consumption of the transistor is increased. Thus, the present invention provides a display device capable of preventing a current from flowing to a display element in signal writing operation without varying potentials of power source lines for supplying a current to the display element per row. In setting a gate-source voltage of a transistor by applying a predetermined current to the transistor, a potential of a gate terminal of the transistor is adjusted so as to prevent a current from flowing to a load connected to a source terminal of the transistor. Therefore, a potential of a wire connected to the gate terminal of the transistor is differentiated from a potential of a wire connected to a drain terminal of the transistor.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: March 16, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura