Abstract: This invention provides a method for forming a multilayer coating film that is capable of forming a multilayer coating film that has excellent blackness, high reflectance of an infrared laser, and excellent coating film performance.
Abstract: Systems having one or more features that are advantageous for depositing fluorinated polymeric coatings on substrates, and methods of employing such systems to deposit such coatings, are generally provided.
Type:
Grant
Filed:
April 24, 2020
Date of Patent:
April 11, 2023
Assignee:
GVD Corporation
Inventors:
W. Shannan O'Shaughnessy, Andrew Grant, Kelli J. Byrne, Michael E. Stazinski, Hilton Pryce Lewis
Abstract: An object of the present invention is to provide a method for forming a multilayer coating film with excellent performance such as acid resistance, by using a coating composition which is completely different from conventional clear coating compositions and cheaper than conventional non-melamine curing type, acid/epoxy type, and isocyanate type clear coating compositions. A method for forming a multilayer coating film comprising a step (1) of applying a base coating composition and a step (2) of applying a clear coating composition on a coating film formed in the step (1), wherein the clear coating composition causes a curing reaction through a transesterification reaction between a hydroxyl group and an alkyl ester group.
Abstract: Systems having one or more features that are advantageous for depositing fluorinated polymeric coatings on substrates, and methods of employing such systems to deposit such coatings, are generally provided.
Type:
Grant
Filed:
April 24, 2020
Date of Patent:
February 28, 2023
Assignee:
GVD Corporation
Inventors:
W. Shannan O'Shaughnessy, Andrew Grant, Kelli J. Byrne, Michael E. Stazinski, Hilton Pryce Lewis
Abstract: A method for forming a multilayer coating film comprising the steps of: (1) applying a base paint (X) to a substrate to form a base coating film, (2) applying an effect pigment dispersion (Y) to the base coating film formed in step (1) to form an effect coating film, (3) applying a clear paint (Z) to the effect coating film formed in step (2) to form a clear coating film, and (4) heating the uncured base coating film, the uncured effect coating film, and the uncured clear coating film formed in steps (1) to (3) to thereby simultaneously cure these three coating films; wherein the effect pigment dispersion (Y) contains water, a black pigment (A), a vapor deposition metal flake pigment (B), and a rheology control agent (C).
Abstract: The present invention provides a method for printing energy-curable ink and coating compositions that have good adhesion to substrates, good print quality, solvent and scratch resistance, and low potential for migration of uncured monomers. The method comprises the steps of printing the ink or coating onto a substrate; partially curing the printed ink or coating by irradiating with UV energy; optionally printing and partially UV curing additional ink layers printed on the first layer; and completing curing via exposure to electron beam radiation, wherein the EB cure dose is greater than or equal to 20 kGy, and the accelerating voltage is greater than or equal to 70 keV.
Type:
Grant
Filed:
April 10, 2017
Date of Patent:
December 13, 2022
Assignee:
Sun Chemical Corporation
Inventors:
Derek Ronald Illsley, Stephen Anthony Hall
Abstract: A method of applying a gas-impermeable coating includes forming a polyelectrolyte complex suspension. The polyelectrolyte complex suspension is applied to a substrate. The substrate having the polyelectrolyte complex applied thereon is treated. The treating reduces salt content of the polyelectrolyte complex. The treating results in a gas-impermeable coating being formed on the substrate.
Type:
Grant
Filed:
October 18, 2017
Date of Patent:
December 6, 2022
Assignee:
The Texas A & M University System
Inventors:
Jaime C. Grunlan, Merid Haile, Ryan Smith
Abstract: A doping method using an electric field includes stacking a sacrificial layer on a doped layer, disposing a doping material on the sacrificial layer, disposing electrodes on the doping material and the doped layer, respectively, and doping the doping material into the doped layer through oxidation, diffusion, and reduction of the doping material by the electric field.
Type:
Grant
Filed:
July 29, 2020
Date of Patent:
November 29, 2022
Assignee:
KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
Abstract: A coating method applied to perform coating with liquid metal thermal grease and a heat dissipation module are provided. The coating method includes: providing liquid metal thermal grease on a surface of an electronic element, and scraping the liquid metal thermal grease by a scraper, to coat the surface of the electronic element with the liquid metal thermal grease. A surface of the scraper is roughened. According to the coating method, the surface of the electronic element is evenly coated with the liquid metal thermal grease effectively.
Abstract: A method for producing a vapor deposition mask capable of satisfying both enhancement in definition and reduction in weight even when a size increased, a method for producing a vapor deposition mask device capable of aligning the vapor deposition mask to a frame with high precision, and a method for producing an organic semiconductor element capable of producing an organic semiconductor element with high definition are provided. A metal mask provided with a slit, and a resin mask that is positioned on a front surface of the metal mask and has openings corresponding to a pattern to be produced by vapor deposition arranged by lengthwise and crosswise in a plurality of rows, are stacked.
Abstract: The elastomeric electrode includes: a stretchable substrate 10 having wrinkles formed on one surface thereof, the peaks C and valleys T of the wrinkles being repeated; a wrinkled metal nanoparticle layer 20 including metal nanoparticles 21 and formed by deposition of the metal nanoparticles along the wrinkles of the substrate 10; and a wrinkled monomolecular layer 30 including a monomolecular material having one or more amine groups (—NH2) and formed by deposition of the monomolecular material onto the metal nanoparticle layer 20. Also disclosed is a method for preparing the elastomeric electrode.
Type:
Grant
Filed:
January 7, 2021
Date of Patent:
November 29, 2022
Assignee:
Korea University Research and Business Foundation
Abstract: To provide a water/oil repellent article which presents little burden on the environment, while being excellent in water/oil repellency, washing durability of the water repellency and friction durability of the water repellency; a method for producing such a water/oil repellent article; and a water/oil repellent composition and a water/oil repellent kit to be used for producing such a water/oil repellent article.
Abstract: The invention relates to a process for hot-spraying a non-aqueous two-component filler coating composition comprising a binder component (A) and a curing component (B) onto a substrate wherein binder component (A) comprises an epoxy resin and curing component (B) comprises a curing agent for curing the epoxy resin and wherein the filler coating composition comprises in the range of from 15 to 35 wt % hollow glass microspheres having an average density in the range of from 0.23 to 0.70 g/cm3 and a mean particle size of at most 52 ?m, in the range of from 0 to 15 wt % inorganic solid material other than hollow glass microspheres, and in the range of from 0 to 20 wt % organic solvent.
Abstract: A method of creating a bulk product that includes a surface layer of specialized content is based upon the use of an excipient with a different surface tension such that self-differentiating of the excipient from the bulk during drying/curing transports the specialized material to the surface of the bulk product. When the excipient has a lower surface tension than the bulk material, the difference in surface tension causes the low surface tension material to rise to the top surface, bringing the specialized material along. Alternatively, if the excipient has a higher surface tension than the bulk material, it will transport the specialized material to the bottom surface of the product.
Abstract: Subject matter of the present invention is a method of applying coating layers (9) to a substrate (1, 11, 21, 31), wherein the substrate (1, 11, 21, 31) is drawn through a coating chamber (2) containing a pressurized coating agent (3) being liquefied or softened by means of a thermal exposure, wherein the substrate (1, 11, 21, 31) is drawn through a drawing tool (8), wherein the coating agent (3) serves as a lubricant between the drawing tool (8) and a surface of the substrate (8) and wherein at the same time the coating layer (9) is applied to the surface of the substrate (8). Subject matter of the invention is also a corresponding apparatus for applying a coating layer (9) to a substrate (1, 11, 21, 31). By means of the invention coating layers can be applied to a substrate in an efficient and economical way.
Abstract: A method for protecting a substrate from corrosion, which method comprises in sequence: a first step including plasma polymerization of a precursor monomer and deposition of the resultant polymer onto at least one surface of a substrate; a second step including exposing the polymer to an inert gas in the presence of a plasma without further deposition of polymer onto the or each surface of the substrate; a third step including plasma polymerization of the precursor monomer used in the first step and deposition of the resultant polymer onto the polymer deposited in the first step so as to increase the thickness of the polymer; and optionally, a fourth step including exposing the polymer to an inert gas in the presence of a plasma without further deposition of polymer onto the or each surface of the substrate.
Abstract: Provided are a sizing agent coated carbon fiber bundle that has excellent mechanical characteristics when used as a carbon fiber reinforced composite material, as well as excellent ease of handling; a method for manufacturing the same; and a prepreg and carbon fiber reinforced composite material of excellent mechanical characteristics, employing the fiber bundle. The carbon fiber bundle is coated with a sizing agent that includes a polyether aliphatic epoxy compound having two or more epoxy groups per molecule and/or a polyol aliphatic epoxy compound or a non-water-soluble compound having a glass transition temperature of ?100-50° C.
Abstract: A volatile organic compound (VOC) free low radiant flux radiation curable composition for aerosol containers including an acrylate-terminated compound component, a thiol monomer or oligomer component, a photoinitiator component, a surface additive component, and an ethanol-based reducer, wherein the composition does not include an acetone component. Moreover, other implementations are directed towards methods of using the aerosol containers to apply the UV Curable Composition.
Abstract: A method for manufacturing neutral color antireflective glass substrates by ion implantation, the method including ionizing a N2 source gas so as to form a mixture of single charge and multicharge ions of N, forming a beam of single charge and multicharge ions of N by accelerating with an acceleration voltage A between 20 kV and 25 kV and setting the ion dosage at a value between 6×1016 ions/cm2 and ?5.00×1015×A/kV+2.00×1017 ions/cm2. A neutral color antireflective glass substrates including an area treated by ion implantation with a mixture of simple charge and multicharge ions according to the method.
Type:
Grant
Filed:
March 13, 2017
Date of Patent:
May 24, 2022
Assignees:
AGC GLASS EUROPE, AGC GLASS COMPANY NORTH AMERICA, AGC Inc., QUERTECH INGENIERIE
Inventors:
Benjamine Navet, Pierre Boulanger, Denis Busardo
Abstract: To provide a method of producing a processed cloth capable of forming various concave-convex patterns on a cloth material in a simple manner. A method of producing a processed cloth comprising the steps of: preparing a cloth; printing a first sizing agent containing a foaming agent on at least a portion of the cloth material; and pressing the printed cloth with a heated metal plate to foam the foaming agent. The method of producing a processed cloth may further include a step of printing a second sizing agent containing a coloring agent on the cloth material. The method of producing the processed cloth may further include a step of sublimation transfer to the cloth material.
Type:
Grant
Filed:
February 4, 2020
Date of Patent:
May 17, 2022
Assignee:
KABUSHIKI KAISHA MIYAKE DESIGN JIMUSHO
Inventors:
Yoshiyuki Miyamae, Manabu Nakatani, Nanae Tera, Mika Kamakura