Patents Examined by Kyle J Moody
  • Patent number: 10693389
    Abstract: A power conversion device includes element array having a high side arm element and a low side arm element, positive electrode-side conductor electrically connected to the high side arm element, negative electrode-side conductor electrically connected to the low side arm element, output-side conductor electrically connected to the high side arm element and the low side arm element, high side driving signal line that controls the high side arm element, and low side driving signal line that controls the low side arm element, the positive electrode-side conductor and the negative electrode-side conductor extend from the element array toward one side in first direction, the output-side conductor extends from the element array toward the other side opposite to the one side in the first direction, and the high side driving signal line and the low side driving signal line extend from the element array toward a second direction crossing the first direction.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: June 23, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Kazuhisa Ishizuka
  • Patent number: 10691152
    Abstract: A low-dropout regulator comprises an output current branch (100) in which a first output driver (110) and a second output driver (120) is arranged. An input amplifier stage (200) provides a first control current (I1) to control the operating state of the first and the second output driver (110, 120). A current generator unit (300) provides a second control current (12) to operate the first output driver (110) in the second operating state and provides a third control current (13) to operate the second output driver (120) in the second operating state, when the first control current (I1) of the input amplifier stage (200) is below a threshold level.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: June 23, 2020
    Assignee: ams International AG
    Inventors: Carlo Fiocchi, Marco Cerchi
  • Patent number: 10686374
    Abstract: A control apparatus performs peak current mode control in which a drive switch is turned off when output of a comparator is inverted during an on-operation period determined by a basic signal. The comparator inverts the output when a reactor current increases to a command current. The control apparatus determines that a switching frequency of the drive switch is required to be switched when the output of the comparator is detected to have not become inverted during the single switching period while the peak current mode control is being performed. The control apparatus sets the switching frequency to a first frequency when the switching determining unit determines that the switching frequency is not required to be switched, and switches the switching frequency from the first frequency to a second frequency lower than the first frequency when the switching determining unit determines that the switching frequency is required to be switched.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: June 16, 2020
    Assignees: SOKEN, INC., DENSO CORPORATION
    Inventors: Kenji Tomita, Seiji Iyasu, Yuichi Handa
  • Patent number: 10686383
    Abstract: Whether a synchronous signal includes a synchronous pulse is determined by detecting whether there is a positive pulse higher than a positive threshold followed by a negative pulse lower than a negative threshold. The pulse signal detection method includes: comparing the synchronous signal with the positive threshold; comparing the synchronous signal with the negative threshold; and determining that the synchronous pulse exists when the positive pulse of the synchronous signal is higher than the positive threshold and the negative pulse of the synchronous signal is lower than the negative threshold in a post detection period after the positive pulse of the synchronous signal is determined higher than the positive threshold.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: June 16, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Li-Di Lo, Chien-Fu Tang, Isaac Y. Chen
  • Patent number: 10673336
    Abstract: A DC-DC converter with droop regulation for better transient performance. The DC-DC converter includes a switching circuit, a comparison circuit and a logic control circuit. A differential voltage indicative of an output voltage of the switching circuit, and a droop voltage indicative of an output current of the switching circuit, are generated. A high-pass filtered signal is obtained by high-pass filtering the droop voltage. The comparison circuit responds to the differential voltage, a reference voltage and the high-pass filtered signal to generate a set signal. The logic control circuit generates a control signal based on the set signal to control the switching circuit.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: June 2, 2020
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Lijie Jiang, Xiaokang Wu, Binci Xu
  • Patent number: 10673320
    Abstract: When a magnitude of a voltage between a pair of first voltage points in a main circuit exceeds a first clamp value, a first clamp circuit absorbs electrical energy of the main circuit from the pair of first voltage points to clamp the voltage to the first clamp value. When a magnitude of a voltage between a pair of second voltage points in the main circuit falls below a second clamp value, a second clamp circuit injects electrical energy to the main circuit from the pair of second voltage points to clamp the voltage to the second clamp value. A voltage conversion circuit performs voltage conversion between a first clamp voltage defining a first clamp value and a second clamp voltage defining a second clamp value.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: June 2, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Koji Higashiyama, Fumito Kusama
  • Patent number: 10673325
    Abstract: A DC-DC converter can include: a switched capacitor converter; and a switching converter, where input ports of the switched capacitor converter and the switching converter are coupled to each other in one of series and parallel connections, and output ports of the switched capacitor converter and the switching converter are coupled to each other in the other of series and parallel connections.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: June 2, 2020
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Wang Zhang, Chen Zhao
  • Patent number: 10669989
    Abstract: Disclosed herein are an apparatus for driving converters in a wind power generation system, an apparatus for controlling converters in a wind power generation system, an apparatus for driving switching element modules in a wind power generation system, and an apparatus for controlling switching element modules in a wind power generation system. The apparatus for driving converters in a wind power generation system includes a converter control unit configured to drive a plurality of converters connected in parallel between a generator and a grid, wherein the converter control unit sequentially drives the converters one by one when output power of the grid increases and sequentially stops the operations of the converters one by one when output power of the grid decreases.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: June 2, 2020
    Assignee: Doosan Heavy Industries Construction Co., Ltd
    Inventors: Sanghoey Lee, Jeonghoon Lee
  • Patent number: 10673317
    Abstract: A soft-switching and low input current ripple inverter circuit is disclosed. It includes two paralleled dual-switch forward inverter circuits with a single transformer, two clamping diodes, and one coupling capacitor. It has voltage-clamping function on the switches with a lossless snubber at the turn-off instant and provides enough leakage energy to achieve zero-voltage switching operation with low input current ripple feature. Two set of the driver signals with 180 phase shift each other are used to control the switches of said first and second dual-switch forward inverters, respectively. Each set of driver signals includes one PWM signal (D) and one near 50% duty cycle driver signal. Employing the proposed inverter circuit, the switch's turn-on voltage can be reduced to half input voltage compared to its prior art circuits. Consequently, the switching losses are thus reduced and efficiency is improved, especially in light-load operation.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: June 2, 2020
    Inventor: Ching-Shan Leu
  • Patent number: 10671108
    Abstract: A bandgap reference circuit and method of using the same are provided. The bandgap reference circuit includes a startup component; an output component; and a bandgap core component coupled there-between. The bandgap core component includes a reference point having a voltage associated with an output signal of the output component. A controller is configured for controlling the bandgap core component and the output component to switch between a low power consumption mode and a normal operation mode based on the voltage at the reference point. When the bandgap core component and the output component operate in the normal operation mode, the bandgap reference circuit outputs a stable voltage and has a first power consumption. When the bandgap core component and the output component operate in the low power consumption mode, the bandgap reference circuit has a second power consumption less than the first power consumption.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: June 2, 2020
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Josh Yang, Zhi Bing Deng, Cheng Tai Huang, Cheng Yi Huang, Wen Jun Weng, Jun Tao Guo
  • Patent number: 10666132
    Abstract: In some examples, an apparatus includes an inverter with a switching circuit. Furthermore, a first circuit has a first circuit ground and a second circuit has a second circuit ground. For example, the second circuit may be electrically connected to the switching circuit, and the second circuit ground may be electrically connected to the first circuit ground. A first capacitor may be electrically connected between the first circuit ground and a main ground. In addition, a second capacitor may be electrically connected between the second circuit ground and the main ground. Additionally, a first impedance of a first conductive path to the main ground may be greater than a second impedance of a second conductive path to the main ground. The first conductive path may include the first circuit ground and the first capacitor, and the second conductive path may include the second circuit ground and the second capacitor.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: May 26, 2020
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Jia Li, Isao Hoda, Hiroki Funato
  • Patent number: 10666159
    Abstract: A single-phase converter control method and apparatus, includes calculating on a voltage corresponding to a first level output by a single-phase converter, a voltage corresponding to a second level output by the single-phase converter, and a voltage reference value about the voltage corresponding to the first level and the voltage corresponding to the second level to obtain a common-mode modulated-wave change rate of the single-phase converter, where the first level is a direct-current-side positive-bus level, and the second level is a direct-current-side negative-bus level, calculating on a first-phase initial modulated wave of the single-phase converter, a second-phase initial modulated wave of the single-phase converter, and the common-mode modulated-wave change rate to obtain a common-mode modulated wave of the single-phase converter, and calculating on the first-phase initial modulated wave, the second-phase initial modulated wave, and the common-mode modulated wave to obtain a pulse width modulated wave
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: May 26, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Fangcheng Liu, Kai Xin, Yunfeng Liu
  • Patent number: 10666155
    Abstract: A synchronous rectification device is adapted to control a conversion circuit, where he conversion circuit includes: a primary side coil, configured to receive input power; and a secondary side coil, configured to generate inductive power in response to the input power. The synchronous rectification device includes: a first control circuit, configured to provide a first control signal to control the primary side coil; a secondary side switch, configured to generate an ON signal and an OFF signal according to the inductive power; an isolation coupling element; and a second control circuit. The isolation coupling element includes: a receiving side, configured to receive the first control signal; and a reaction side, configured to generate a coupling signal in response to the first control signal. The second control circuit outputs a second control signal according to the coupling signal, the ON signal, and the OFF signal to adjust the inductive power.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: May 26, 2020
    Assignee: CHICONY POWER TECHNOLOGY CO., LTD.
    Inventors: Tso-Jen Peng, Ssu-Hao Wang
  • Patent number: 10666139
    Abstract: During a load transient or load current step, an error amplifier of a regulator circuit can be temporarily pushed to saturation and a compensation capacitor can be discharged. The present inventor has recognized, among other things, that the transient response performance in such a case can suffer due to the slow rising rate of the error amplifier caused by the slow charging of the compensation capacitor. Using various techniques, a switching regulator circuit can include a proportional-integral (PI) compensation network clamp circuit that can provide a fast system transient response and a low quiescent current, which can reduce power consumption.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: May 26, 2020
    Assignee: Analog Devices International Unlimited Company
    Inventor: Bin Zhang
  • Patent number: 10658917
    Abstract: A sense terminal is configured to sense a drain-to-source voltage of a field effect transistor and a drive terminal is configured to drive the gate terminal of the field effect transistor to alternatively turn the field effect transistor on and off to provide a rectified current flow in the field effect transistor channel. A comparator is configured to perform a comparison of the drain-to-source voltage of the field effect transistor with a reference threshold and to detect alternate downward and upward crossings of the reference threshold and the drain-to-source voltage. A PWM signal generator is configured to drive the gate terminal of the field effect transistor to turn the field effect transistor on and off as a result of the alternate downward and upward crossings of the reference threshold by the drain-to-source voltage.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: May 19, 2020
    Assignee: STMicroelectronics S.R.L.
    Inventor: Ivan Clemente Massimiani
  • Patent number: 10644610
    Abstract: A first wire (WP1, WN1, WC1) is provided between a first converter unit (U1) and a DC bus line (PL4, NL4, CL4). A second wire (WP2, WN2, WC2) is provided between a second converter unit (U2) and a DC bus line (PL4, NL4, CL4). A third wire (WP3, WN3, WC3) is provided between a third converter unit (U3) and a DC bus line (PL4, NL4, CL4). A first fuse (FP1, FN1, FC1) is inserted in each of the first wire (WP1, WN1, WC1). A second fuse (FP2, FN2, FC2) is inserted in each of the second wire (WP2, WN2, WC2). A third fuse (FP3, FN3, FC3) is inserted in each of the third wire (WP3, WN3, WC3).
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: May 5, 2020
    Assignee: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION
    Inventors: Kazuki Nishimura, Toshihide Nakano
  • Patent number: 10637362
    Abstract: A power supply may include a power block to receive an input power and generate an output power; and a control system coupled to the power block, wherein the power block and control system are arranged to provide unidirectional current flow and bipolar voltage during operation of the power supply.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 28, 2020
    Assignee: ESAB AB
    Inventor: Andrzej Mnich
  • Patent number: 10637368
    Abstract: A power converter includes an energy transfer element coupled between an input of the power converter and an output of the power converter. A control switch is coupled to a normally-on switch. The normally-on switch is coupled to the energy transfer element. A controller is coupled to control switching of the control switch to control a transfer of energy from the input of the power converter to the output of the power converter. The controller includes a drive circuit coupled to generate a drive signal in response to a control signal to control switching of the control switch. The drive signal in a first stage of a multiple stage gate drive is coupled not to fully enhance the control switch. The drive signal provided by a second stage of the multiple stage gate drive is coupled to fully enhance the control switch.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: April 28, 2020
    Assignee: Power Integration, Inc.
    Inventor: Rajko Duvnjak
  • Patent number: 10630169
    Abstract: Embodiments of a method and a device are disclosed. In an embodiment, a method for power factor correction (PFC) at a switched mode power supply (SMPS) is disclosed. The method involves receiving an input voltage, generating a reference waveform that is in phase with the input voltage, determining a time value for phase-shifting a PFC current signal, scaling the time value with a phase factor to generate a scaled time value, phase-shifting the reference waveform according to the scaled time value to generate a phase-shifted reference waveform, and generating the PFC current signal based on the phase-shifted reference waveform.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 21, 2020
    Assignee: NXP B.V.
    Inventor: Joan Wichard Strijker
  • Patent number: 10630185
    Abstract: A power delivery device and a control method are shown. The power delivery device includes a power factor correction circuit, and an output voltage control circuit. The power factor correction circuit is configured to increase a power factor of the power delivery device. The output voltage control circuit is configured to control an output voltage of the power delivery device, and detect an output current of the power delivery device. The power factor correction circuit is uncontrolled by the output voltage control circuit in response to a first load state of the power delivery device, and is controlled by the output voltage control circuit in response to a second load state of the power delivery device.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: April 21, 2020
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Kun-Chi Lin, Chung-Chieh Cheng, Kun-Jang Kuo, Tien-He Chen, Shou-Chieh Lin