Patents Examined by Kyle J Moody
  • Patent number: 11418104
    Abstract: Disclosed are a current measurement method for a three-phase pulse width modulation inverter using a real-time switch junction temperature estimation technique, and a three-phase pulse width modulation inverter system. The current measurement method may comprise the steps of: calculating a power loss of a switch of an inverter; estimating the junction temperature (T j) of the switch by using a thermal equivalent circuit; estimating a resistance (R ds on) value between both ends of a drain and a source by using a resistance (R ds on) map based on the junction temperature (T j); and using, as a control signal of the inverter, a current value calculated based on the estimated resistance (R ds on) value.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: August 16, 2022
    Assignee: KOOKMIN UNIVERSITY INDUSTRY ACADEMY COOPERATION FOUNDATION
    Inventors: Geun Ho Lee, Jae Yeob Hwang, Hee Sun Lim, Dong Gil Kang, Dong Ok Kim
  • Patent number: 11416015
    Abstract: A reference generator provides a reference output voltage that is continuously available while providing certain efficiencies of a duty-cycled voltage regulator. The reference output voltage is generated by a sample-and-hold circuit that is coupled to a voltage regulator. On command, the sample-and-hold circuit samples a low dropout voltage regulator that may be referenced by a bandgap circuit. During hold periods of the sample-and-hold circuit, the voltage regulator, in particular the bandgap circuit, may be disabled in order to conserve power. A sample cycle by the sample-and-hold circuit may be triggered by a signal received from a configurable finite state machine. The reference generator is effectively duty cycled in a manner that conserves available battery power, while still providing a constant reference output that is always available. The reference generator is especially suited for low-power, battery operated applications.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: August 16, 2022
    Assignee: Texas Instruments Incorporated
    Inventors: James Murdock, Danielle Griffith, Per Torstein Roine
  • Patent number: 11418129
    Abstract: A method and a system sense at least one phase difference between at least two phases of a group of parallel connected three phase AC output terminals (e.g., a first phase AC output terminal, a second phase AC output terminal, or a third phase AC output terminal). The parallel connected AC output terminals may be three parallel connected DC to AC three phase inverters. Features of the parallel connected three phase AC output terminals enable wiring of conductors to one phase of an AC output terminal to be swapped with wiring of conductors of one phase of another phase AC output terminal. A sign of at least one phase difference is verified different from signs of other phase differences thereby the system determining the lateral position of the at least one three phase inverters relative to at least one other of the three phase inverters.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: August 16, 2022
    Assignee: Solaredge Technologies Ltd.
    Inventors: Omer Aloni, Alon Zohar, Tzachi Glovinsky, Menashe Walsh
  • Patent number: 11404964
    Abstract: A transient current in a rectifier circuit is effectively reduced. In the rectifier circuit, a current flows from a power supply to a coil when a transistor is turned ON. When the transistor is turned OFF, the current of the coil flows into a second rectifier.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: August 2, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventor: Takeshi Shiomi
  • Patent number: 11397444
    Abstract: A dropout detection circuit for an LDO voltage regulator is disclosed. An LDO voltage regulator includes a power transistor having a drain terminal coupled to an output voltage node and a gate terminal coupled to an output of an error amplifier. A source terminal of the power transistor is coupled to an input voltage node. The circuit further includes a detection circuit having a first input coupled to the gate terminal and a second input coupled to the drain terminal. The detection circuit is configured to generate an indication responsive to detecting that the LDO voltage regulator has entered operation below a minimum dropout.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: July 26, 2022
    Assignee: Apple Inc.
    Inventors: Sujan K. Manohar, Jay B. Fletcher
  • Patent number: 11397445
    Abstract: A radiation tolerant discrete reference voltage source includes just two bipolar junction transistors, five resistors, and a Zener diode. Two of the resistors form a voltage divider that outputs a reference voltage. Values of the resistors included in the voltage divider can be selected to output a desired reference voltage level, for example, 5.00V, 4.00V, or 2.50V, which obviates a need to procure unique voltage references for those reference voltage levels and provides design flexibility. The radiation tolerant discrete reference voltage source provides improved control over radiation hardness and does not require high gain transistors. Because relatively few, inexpensive components are used, the radiation tolerant discrete reference voltage source can be produced at a low cost.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: July 26, 2022
    Assignee: Crane Electronics, Inc.
    Inventors: Cuon Lam, Sovann Song
  • Patent number: 11398767
    Abstract: Various embodiments relate to a power converter including a resonant converter with an controller, the controller configured to control the converter to operate in a normal mode when output power is above a burst mode threshold level, start a timer when the output power falls below the burst mode threshold level, continue operating in the normal mode until the timer reaches a predetermined time and operate in burst mode when the timer reaches the predetermined time.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: July 26, 2022
    Assignee: NXP B.V.
    Inventors: Peter Theodorus Johannes Degen, Jacobus Eduardus Henricus Maria Peeters, Tsung-Pin Tang, Edy Chandra
  • Patent number: 11398782
    Abstract: A power converter includes a first and a second transformers having different auxiliary winding voltage levels. A bias voltage supply circuit generates a bias supply voltage of an integrated circuit used to control the power converter, and includes a first and a second bias supply branches jointly coupled to a supply capacitor to provide the bias supply voltage. When the bias supply voltage is higher than a threshold voltage, the first bias supply branch to receive the one with lower level of the two auxiliary winding voltages is switched from a deactivation state to an activation state to provide the bias supply voltage, when the bias supply voltage is less than the threshold voltage, the second bias supply branch to receive the one with larger level of the two auxiliary winding voltages is switched from the deactivation state to the activation state to provide the bias supply voltage.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: July 26, 2022
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventor: Siran Wang
  • Patent number: 11398768
    Abstract: A semiconductor module arrangement includes an input stage including a first output terminal and a second output terminal, wherein a first inductive element is coupled to the first output terminal; an output stage including at least one first controllable semiconductor element, a third input terminal coupled to the first inductive element such that the first inductive element is coupled between the first output terminal and the third input terminal, a fourth input terminal coupled to the second output terminal, a third output terminal, and a fourth output terminal; a second controllable semiconductor element and a first capacitive element coupled in series and between a first common node coupled between the first inductive element and the third input terminal, and a second common node coupled between the second output terminal and the fourth input terminal; and a first diode element coupled in parallel to the second controllable semiconductor element.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: July 26, 2022
    Inventor: Michael Schlueter
  • Patent number: 11392160
    Abstract: A bias circuit includes a linear core circuit CC with first and second mutually type corresponding transistors (M1; M2) and a current mirror CM with third and fourth transistors (M3; M4) of opposite type of M1 and M2. To obtain an equilibrium with a constant transconductance of the first transistor, first and second negative feedback loops (L1; L2) are applied, one including the linear core circuit CC, the other including the current mirror CM. In a first setting one loop suppresses differences between first and second drain voltages (Vd1; Vd2) and the other loop suppresses differences between one of of the first and second drain voltage Vd1 and Vd2 and a reference voltage Vref. In the second setting, one loop suppresses differences between the first drain voltage Vd1 and the reference voltage Vref and the other loop differences between the second drain voltage Vd2 and the reference voltage Vref.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: July 19, 2022
    Assignee: Semiconductor Ideas to Market (ITOM) B.V.
    Inventor: Aleksandar Gvozdenovic
  • Patent number: 11392154
    Abstract: Circuits and methods that provide for fast power up and power down times in a multi-stage LDO regulator. In one embodiment, a multi-stage LDO regulator circuit includes, for each stage for which fast power up and/or power down times are desired, at least one transconductance amplifier coupled and configured to compare a primary reference voltage to one of a secondary reference voltage for the stage or an output voltage of the stage, and coupling and configuring the at least one transconductance amplifier to charge and/or discharge an associated capacitor to achieve a desired charge level within a specified time independently of the value of the associated capacitor. In general, the transconductance amplifiers of each stage are configured to charge and/or discharge an associated capacitor in synchronism with a voltage present on the primary reference voltage input.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: July 19, 2022
    Assignee: pSemi Corporation
    Inventors: Carlos Zamarreno Ramos, Satish Vangara
  • Patent number: 11394301
    Abstract: For inductor-based DC-DC converters, a current shunt switch can provide an alternate path for the inductor current to flow that does not include the output capacitor. An amplifier circuit can be included and coupled with a control node of the current shunt switch to adjust a voltage on the control node to control an amount of inductor current diverted away from the output node. A fast linear loop can be included to ensure smooth transitions when engaging or disengaging the current shunt switch. These techniques can minimize the amount and duration of the subsequent negative output voltage excursion, which can be dependent on the specific ESL and ESR values of the output voltage capacitor, for the cases when the final value of the step-down load-transient is not zero. These techniques can improve a positive output voltage response caused by an output load transient in the negative direction.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: July 19, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Eko Lisuwandi, Jinhuang Lu, Mark Robert Vitunic
  • Patent number: 11394311
    Abstract: A power conversion apparatus includes a power module, a capacitor unit 23, and a first connection portion 80a. The first connection portion 80a connects a first power conversion circuit portion 31 of the power module and the capacitor unit 23 to each other. The first connection portion 80a includes a first positive electrode bus bar extending portion 83 and a second positive electrode bus bar extending portion 93 which extend along a first module case 61 and a first positive electrode bus bar stretching portion 85 and a second positive electrode bus bar stretching portion 95 which extend in a Z axis direction. The first connection portion 80a includes a first negative electrode bus bar extending portion 84 and a second negative electrode bus bar extending portion 94 which extend along the first module case 61 and a first negative electrode bus bar stretching portion 86 and a second negative electrode bus bar stretching portion 96 which extend in the Z axis direction.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: July 19, 2022
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Takahiro Uneme
  • Patent number: 11387737
    Abstract: A power stage of a multi-phase power converter includes: a first switch device configured to connect an output node of the power stage to a supply voltage in a first switching state of the power stage; a second switch device configured to connect the output node to ground in a second switching state of the power stage; driver circuitry configured to set the power stage in either switching state or a non-switching state, a duration of each state and a timing transition between the states being indicated by a control signal; current sense circuitry configured to measure current flowing through at least one of the switch devices; and timing circuitry configured to adjust the timing transition between switching states so as to change an effective duration of the first and/or second switching state relative to a reference duration defined by the control signal, based on magnitude of the measured current.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: July 12, 2022
    Assignee: Infineon Technologies Austria AG
    Inventor: Benjamim Tang
  • Patent number: 11387738
    Abstract: When a constant on-time flyback converter is in the switch-on stage, the gate voltage of the switch and the input voltage of the flyback converter adopt the primary side of the transformer to control. The gate voltage is controlled by the second control signal generated by the controller. The flyback converter is then turn off to enter the switch off stage. When the flyback converter is in the switch off stage, the secondary side controller on the secondary side of the transformer, based on the output voltage and output current of the secondary side, sends a first control signal to the primary side controller to control the main switch to turn on. Thus, the flyback converter enters the switch-on stage. Therefore, the calculation complexity is reduced, and there is no need to set a blanking time, such that the flyback converter can be used in high switching frequency applications.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: July 12, 2022
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INTERNATIONAL LP
    Inventors: Jung-Pei Cheng, Hung-Ta Hsu, Hsiang-Chung Chang, Yueh-Ping Yu, Yu-Ming Chen
  • Patent number: 11387739
    Abstract: A driver circuit for a resonant converter includes a comparator that generates a first control signal indicating when a resonant current changes sign. A first ramp generator circuit outputs a first ramp signal, and a comparison circuit determines whether the first ramp signal reaches a reference threshold. The driver circuit drives a half-bridge via drive signals during consecutive first second switching semi-periods, each of which ends when the comparison circuit indicates the first ramp signal has reached a reference threshold. A control circuit generates in each of the first and the second switching semi-periods control signals indicating a first interval and a second interval. A correction circuit modifies the first ramp signal to have a first gradient value during the first interval and a second gradient value during the second interval. Alternatively, the correction circuit modifies a reference threshold by adding a second ramp signal to an initial threshold value.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: July 12, 2022
    Assignee: STMicroelectronics S.r.l.
    Inventor: Claudio Adragna
  • Patent number: 11387823
    Abstract: A PFM control circuit includes a switching circuit, a slope-decision circuit, a flip-flop, a first and a second comparison circuits. The first comparison circuit outputs a first signal according to an output voltage of a power conversion circuit. The switching circuit outputs a switching signal according to an output current of the power conversion circuit. The slope-decision circuit outputs a slope modulation voltage, and determines a slope modulation voltage with a first or a second slope according to the switching signal. The second comparison circuit outputs the second signal according to the slope modulation voltage. The flip-flop outputs a control signal to the power conversion circuit according to the first and the second signals. When the slope modulation voltage has the first or the second slope, the control signal has a first or a second frequency accordingly. The first frequency is higher than the second frequency.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: July 12, 2022
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Shih-Cheng Wang, Chun-Yu Luo, Shih-Chieh Chen, Liang-Hui Li, Chun-Fu Chang
  • Patent number: 11381167
    Abstract: A converter circuit includes a power stage circuit configured to convert an input voltage received by an inductor to an output voltage provided at an output; a control circuit configured to generate input pulses to control the power stage circuit; a slope compensation circuit configured to provide a compensation signal to the control circuit for overcoming a sub-harmonic oscillation in the converter circuit, wherein the control circuit is configured to generate the input pulses based at least in part on the compensation signal; a slope compensation adjustment circuit configured to determine a rate of change of a current at the inductor and to provide a slope compensation adjustment signal based on the determined rate of change; and a modulation circuit configured to modulate the compensation signal with the slope compensation adjustment signal to produce the adjusted slope compensation signal.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: July 5, 2022
    Assignee: Texas Instruments Incorporated
    Inventor: Michael James Munroe
  • Patent number: 11381151
    Abstract: A driving circuit for driving a synchronous rectifier device. The driving circuit may include a controllable charging circuit and a slope sensing circuit. The slope sensing circuit may sense whether an abrupt rising change in a voltage drop from a sensing terminal to a reference ground terminal of the driving circuit is occurring, and provide a slope sensing signal in response to a rising edge of the abrupt rising change in the voltage drop. The controllable charging circuit may receive the slope sensing signal and provide a charging current to a supply terminal of the driving circuit in response to each rising edge of the abrupt rising change in the voltage drop.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: July 5, 2022
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Jiayou Ye, Yuedong Chen, Hui Li
  • Patent number: 11381166
    Abstract: The present disclosure provides a switch power supply circuit, which includes a step-down transistor, a control module, a first switch transistor, a second switch transistor, a third switch transistor, and a power switch transistor. In the switch power supply circuit of the present disclosure, the first terminal of the second switch transistor is directly coupled with the input voltage, and the second switch transistor can directly obtain sufficient driving current from the input voltage to drive the power switch transistor. The present application can ensure the reliability and efficiency of the system without an additional energy storage capacitor, which reduces the costs of the system.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: July 5, 2022
    Assignee: CRM ICBG (WUXI) CO. LTD.
    Inventors: Jin Li, Yong You