Patents Examined by Ladan Mohaddes
  • Patent number: 8859145
    Abstract: A primary cell having an anode comprising lithium or lithium alloy and a cathode comprising iron disulfide (FeS2) or a mixture of iron disulfide (FeS2) and iron sulfide (FeS) and conductive carbon particles. A cathode slurry is prepared comprising the FeS2 or FeS2 plus FeS powder, conductive carbon, binder, and a solvent. The binder is preferably a styrene-ethylene/butylene-styrene (SEBS) block copolymer. There is an advantage discovered in utilizing a hydronaphthalene solvent to form the cathode slurry. The preferred solvent is 1,2,3,4-tetrahydronaphthalene or decahydronaphthalene and mixtures thereof. The slurry mixture is coated onto a conductive substrate and the solvent evaporated leaving a dry cathode coating on the substrate. Higher drying temperature may be used resulting in a dry cathode coating which resists cracking. The anode and cathode can be spirally wound with separator therebetween and inserted into the cell casing with electrolyte then added.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 14, 2014
    Assignee: The Gillette Company
    Inventors: Maya Stevanovic, Michael Pozin, Yelena Kouznetsova, Steven J. Specht, Fred J. Berkowitz
  • Patent number: 8846237
    Abstract: An electrode assembly and a secondary battery having the same improve efficiency and stability of the secondary battery. The electrode assembly includes: a positive electrode plate having a positive electrode collector on which a positive electrode coating portion and a positive electrode non-coating portion are formed; a negative electrode plate having a negative electrode collector on which a negative electrode coating portion and a negative electrode non-coating portion are formed; a separator disposed between the positive electrode plate and the negative electrode plate; and an insulating member disposed on one side of the positive or negative electrode non-coating portion, and formed adjacent to at least one of the ends of the positive electrode coating portion and/or at least one of the end of the negative electrode coating portion. The electrode assembly at least prevents damage to a separator generated due to non-uniformity of the ends of the electrode coating portion.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: September 30, 2014
    Assignee: Samsung SDI Co. Ltd.
    Inventors: Jong-Ku Kim, Yoo-Eup Hyung
  • Patent number: 8846265
    Abstract: A UEA for a fuel cell having an active region and a feed region is provided. The UEA includes an electrolyte membrane disposed between a pair of electrodes. The electrolyte membrane and the pair of electrodes is further disposed between a pair of DM. The electrolyte membrane, the pair of electrodes, and the DM are configured to be disposed at the active region of the fuel cell. A barrier film coupled to the electrolyte membrane is configured to be disposed at the feed region of the fuel cell. The dimensions of the electrolyte membrane are thereby optimized. A fuel cell having the UEA, and a fuel cell stack formed from a plurality of the fuel cells, is also provided.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: September 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Matthew J. Beutel, Saurabh Vyas, Ronald L. James, Steven G. Goebel
  • Patent number: 8846239
    Abstract: A battery module includes a plurality of rechargeable batteries having terminals, bus bars electrically connecting the terminals of the rechargeable batteries, connection parts protruding from the bus bars, and transmission wires electrically connecting the connection parts to a battery management system (BMS), the transmission wires being configured to transmit voltages of the rechargeable batteries to the BMS.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: September 30, 2014
    Assignees: Samsung SDI Co., Ltd., Robert Bosch GmbH
    Inventors: Shi-Dong Park, Tae-Yong Kim, Myung-Chul Kim
  • Patent number: 8846225
    Abstract: Methods for making a recycled or refurbished electrode material for an energy-storage device are provided. One example method comprises harvesting a lithium-deficient electrode material from a recycling or waste stream, and replenishing at least some lithium in the lithium-deficient electrode material. A second example method comprises breeching an enclosure of a cell of an energy storage device, replenishing at least some lithium in a lithium-deficient electrode material of the cell, and sealing the enclosure of the cell.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: September 30, 2014
    Inventor: Steven E. Sloop
  • Patent number: 8846235
    Abstract: A battery module including: a plurality of aligned cells, wherein a cooling unit accommodating a cooling agent is provided in a vicinity of the cells, part of the cooling unit is a vulnerable section having a relatively low compressive strength, and the vulnerable section is unsealed when heat is abnormally generated in at least one of the cells.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: September 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Tomohiko Yokoyama, Masato Fujikawa, Keisuke Shimizu, Shunsuke Yasui, Daisuke Kishii
  • Patent number: 8846270
    Abstract: A solid oxide fuel cell (SOFC) includes a plurality of sub-cells. Each sub-cell includes a first electrode in fluid communication with a source of oxygen gas, a second electrode in fluid communication with a source of a fuel gas, and a solid electrolyte between the first electrode and the second electrode. The SOFC further includes an interconnect between the sub-cells. In one embodiment, the SOFC has a first surface in contact with the first electrode of each sub-cell and a second surface that is in contact with the second electrode of each sub-cell; and the interconnect consists essentially of a doped M-titanate based perovskite, wherein M is an alkaline earth metal. In another embodiment, the interconnect includes a first layer in contact with the first electrode of each sub-cell, and a second layer in contact with the second electrode of each sub-cell. The first layer includes an electrically conductive material selected from the group consisting of an metal, a metal alloy and a mixture thereof.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: September 30, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventor: Yeshwanth Narendar
  • Patent number: 8846267
    Abstract: A flexible MEA comprises an integral assembly of electrode, catalyst and ionomeric membrane material.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: September 30, 2014
    Assignee: ITM Power (Research) Ltd.
    Inventors: Donald James Highgate, Jonathan Anthony Lloyd, Simon Bourne, Rachel Louise Smith
  • Patent number: 8741488
    Abstract: An electrode which has a Si-containing material layer and a porous film, and a lithium battery employing the same. In the electrode, the Si-containing material layer is applied on an electrode current collector and/or an electrode active material to protect the surface of the electrode current collector from oxidation. Also, the applied Si-containing material layer enhances the adhesion between the electrode current collector and the electrode active material to improve cycle life characteristics. Also, it increases the adhesion between the electrode active material and the porous film to reduce resistance, and to improve ohmic contacts and to lower the Shottkey barrier. In addition, the electrode includes the porous film functioning as a separator, and thus can provide a battery which is safe under conditions of overcharge and heat exposure without needing an additional separator.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: June 3, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-Hee Kim, Won-Chull Han, Jae-Yun Min
  • Patent number: 8697294
    Abstract: The battery includes a solid electrolyte activating a positive electrode and a negative electrode. The electrolyte is a solid including a lithium ion conductive glass-ceramic. The negative electrode includes a buffer layer between a negative medium and the electrolyte. The negative medium includes one or more primary negative active materials. The buffer layer includes one or more secondary negative active materials that do not dissolve the lithium ion conductive glass-ceramic. The secondary negative active materials can have a redox potential greater than 0.5 V vs Li/Li+.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: April 15, 2014
    Assignee: Quallion LLC
    Inventors: Hisashi Tsukamoto, Ryo Tamaki, Mikito Nagata, Hiroshi Nakahara
  • Patent number: 8691441
    Abstract: A nano graphene-enhanced particulate for use as a lithium battery cathode active material, wherein the particulate is formed of a single or a plurality of graphene sheets and a plurality of fine cathode active material particles with a size smaller than 10 ?m (preferably sub-micron or nano-scaled), and the graphene sheets and the particles are mutually bonded or agglomerated into an individual discrete particulate with at least a graphene sheet embracing the cathode active material particles, and wherein the particulate has an electrical conductivity no less than 10?4 S/cm and the graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the cathode active material combined.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: April 8, 2014
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Ming C. Wang, Bor Z. Jang
  • Patent number: 8684106
    Abstract: A battery pack 10 includes a housing 11, a group of cells 12, a board 13, a plurality of second terminals 14, and a cover 15. An opening 16c is formed in the housing 11. The board 13 has a terminal arranging part 13A. A plurality of the second terminals 14 are arranged on the terminal arranging part 13A of the board 13. The cover 15 has a plate-like shape, and covers an area of the board 13 which is positioned between the terminal arranging part 13A and the opening 16c.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 1, 2014
    Assignee: Hitachi Koki Co., Ltd.
    Inventors: Hiroyuki Hanawa, Kousei Yokoyama, Keita Saitou
  • Patent number: 8663868
    Abstract: Shaped microporous articles are produced from polyvinylidene fluoride (PVDF) and nucleating agents using thermally induced phase separation (TIPS) processes. The shaped microporous article is oriented in at least one direction at a stretch ratio of at least approximately 1.1 to 1.0. The shaped article may also comprise a diluent, glyceryl triacetate. The shaped microporous article may also have the micropores filled with a sufficient quantity of ion conducting electrolyte to allow the membrane to function as an ion conductive membrane. The method of making a microporous article comprises the steps of melt blending polyvinylidene fluoride, nucleating agent and glyceryl triacetate; forming a shaped article of the mixture; cooling the shaped article to cause crystallization of the polyvinylidene fluoride and phase separation of the polyvinylidene fluoride and glyceryl triacetate; and stretching the shaped article in at least one direction at a stretch ratio of at least approximately 1.1 to 1.0.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: March 4, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Samantha D. Smith, Gene H. Shipman, Robert M. Floyd, Harold Todd Freemyer, Steven J. Hamrock, Michael A. Yandrasits, David G. S. Walton
  • Patent number: 8658328
    Abstract: A stack structure for a solid oxide fuel cell includes a plurality of stacked single cells, each having a fuel electrode layer including a fuel electrode and an air electrode layer including an air electrode, the fuel electrode layer and the air electrode layer being arranged opposite each other on either side of a solid electrolyte, separators arranged between the stacked single cells to separate the single cells, and non-porous seal parts located within the fuel electrode layer and the air electrode layer, are equivalent to either the separators or the solid electrolyte at least in terms of thermal expansion and contraction characteristics, and are integrated with an edge of the fuel electrode or an edge of the air electrode, and also with the adjacent separator and the adjacent solid electrolyte.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: February 25, 2014
    Assignees: Japan Fine Ceramics Center, FCO Power, Inc.
    Inventors: Seiichi Suda, Kaori Jono, Fumio Hashimoto, Takayuki Hashimoto
  • Patent number: 8652688
    Abstract: A silicon-based anode comprises an alginate-containing binder. The many carboxy groups of alginate bind to a surface of silicon, creating strong, rigid hydrogen bonds that withstand battery cycling. The alginate-containing binder provides good performance to the anode by (1) improving the capacity of the anode in comparison to other commercially-available binders, (2) improving Columbonic efficiency during charging and discharging cycles, and (3) improving stability during charging and discharging cycles.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: February 18, 2014
    Assignees: Clemson University, Georgia Tech Research Corporation
    Inventors: Gleb Yushin, Igor Luzinov, Bogdan Zdyrko, Oleksandr Magazynskyy, Igor Kovalenko
  • Patent number: 8647771
    Abstract: The present invention provides electrode-electrolyte composite particles for a fuel cell, which have either electrode material particles uniformly dispersed around electrolyte material particles or electrolyte material particles uniformly dispersed around electrode material particles, to enhance the electrode performance characteristics and electrode/electrolyte bonding force, as well as thermal, mechanical and electrochemical properties of the fuel cell, in a simple method without using expensive starting materials and a high temperature process.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: February 11, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong Ho Lee, Hae Weon Lee, Hue Sup Song, Joo Sun Kim, Ji Won Son, Hae Ryoung Kim, Hwa Young Jung
  • Patent number: 8623553
    Abstract: The present disclosure relates generally to a high capacity cathode material suitable for use in a non-aqueous electrochemical cell that comprises a mixture of at least three different cathode materials, and more specifically a mixture of fluorinated carbon, an oxide of copper and an oxide of manganese. The present disclosure additionally relates to a non-aqueous electrochemical cell comprising such a cathode material and, in particular, to such a non-aqueous electrochemical cell that can deliver a higher capacity than a conventional cell, and/or that possesses an improved end-of-life indication.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: January 7, 2014
    Assignee: Eaglepicher Technologies, LLC
    Inventors: Dong Zhang, Ernest Ndzebet, Min Qi Yang, Viet Vu, Umamaheswari Janakiraman, Mario Destephen
  • Patent number: 8617748
    Abstract: Methods and articles relating to separation of electrolyte compositions within lithium batteries are provided. The lithium batteries described herein may include an anode having lithium as the active anode species and a cathode having sulfur as the active cathode species. Suitable electrolytes for the lithium batteries can comprise a heterogeneous electrolyte including a first electrolyte solvent (e.g., dioxolane (DOL)) that partitions towards the anode and is favorable towards the anode (referred to herein as an “anode-side electrolyte solvent”) and a second electrolyte solvent (e.g., 1,2-dimethoxyethane (DME)) that partitions towards the cathode and is favorable towards the cathode (and referred to herein as an “cathode-side electrolyte solvent”).
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: December 31, 2013
    Assignee: Sion Power Corporation
    Inventors: Yuriy V. Mikhaylik, Chariclea Scordilis-Kelley, Igor Kovalev, Cathie Burgess
  • Patent number: 8617770
    Abstract: One embodiment of the invention includes a method including providing a cathode catalyst ink comprising a first catalyst, an oxygen evolution reaction catalyst, and a solvent; and depositing the cathode catalyst ink on one of a polymer electrolyte membrane, a gas diffusion medium layer, or a decal backing.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: December 31, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Susan G. Yan, Hubert A. Gasteiger, Paul Taichiang Yu, Wenbin Gu, Jingxin Zhang
  • Patent number: 8614024
    Abstract: A power supply apparatus has a combined power source with power cells configured electrically independently. A switch arbitrarily changes connection paths of the power cells by selectively connecting terminals of the power cells through switching elements. A detector detects differences in electrical potentials between power cell terminals. An output detector detects a power consumption in a load and/or an output power of the power source. ON-OFF states of the switching elements are controlled by a control signal generated based on voltage signals representing detected differences in electrical potentials, power consumption, and output power. A connection status of each power cell is controlled so as to halt outputting of the power cell having the lowest output voltage if it is detected that a detected power value is equal to or lower than an output power preset based on a power generating capacity of the power source.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: December 24, 2013
    Assignee: Seiko Instruments Inc.
    Inventors: Norimasa Yanase, Noboru Ishisone, Tsuneaki Tamachi, Toru Ozaki, Takafumi Sarata, Kazutaka Yuzurihara, Fumiharu Iwasaki